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ARTICLE INFO ABSTRACT

Keywords: Evolutionary algorithms, which emulate natural selection and species evolution, have long been applied to

DE process optimization in chemical engineering. While these methods have demonstrated robustness to various

BUMDA . optimization challenges, their computational requirements escalate with increasing case study complexity. This

DF'FUMDA Compansm_l . paper investigates the application of the Boltzmann Univariate Marginal Distribution Algorithm (BUMDA) as an

Distillation systems optimization .. 1 . s . . .

DE-BUMDA Performance optimization tool for distillation processes. BUMDA is a distribution estimation algorithm (EDA) based on the
Boltzmann distribution, characterized by its alignment to the optimal value of the fitness function. The perfor-
mance of BUMDA is benchmarked against Differential Evolution (DE), a widely adopted algorithm in chemical
engineering optimization. Both algorithms are coupled with a self-adaptive constraint handling technique. The
optimization objective is to minimise the total heat input in three different distillation systems while satisfying
purity and recovery constraints. Results indicate that BUMDA outperforms DE, yielding superior solution quality,
reduced computational complexity and lower computing time. Furthermore, BUMDA effectively avoids local
minima entrapment. A statistical comparison of the algorithms using bootstrap test, confirms the enhanced
performance of BUMDA over DE.

1. Introduction industries. As a highly energy-intensive operation, distillation accounts

for a substantial portion of energy consumption in industrial processing,

In the realm of chemical engineering, optimization is a critical tool
for designing systems that utilize resources efficiently, thereby mini-
mizing environmental impacts. The complexity of chemical engineering
problems stems from their highly nonlinear, multivariable nature,
encompassing both discrete and continuous variables, and often bound
by thermodynamic or design constraints. These challenges necessitate
robust and efficient optimization tools to achieve feasible and optimal
solutions [Kim and Wankat, 2004; Hu et al., 2022].

Distillation is among the most widely utilized separation processes in
chemical engineering, playing a critical role in purifying multicompo-
nent mixtures, especially within the chemical and petrochemical
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making energy optimization an essential focus within process design.
Considerable research has therefore been devoted to improving the
energy efficiency of distillation configurations, given that the optimal
design of multicomponent distillation systems remains one of the most
complex and challenging issues in process engineering.

To address these challenges, researchers have introduced innovative
designs aimed at enhancing efficiency and reducing energy re-
quirements. These designs include advanced configurations such as
divided-wall columns, thermally coupled systems, and thermodynami-
cally equivalent configurations. In addition, intensified operation con-
cepts, such as the integration of reactive stages directly within
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distillation columns, have been proposed to further enhance energy
performance (Weinfeld et al., 2018; Amminudin, et al., 2001; Petlyuk,
1965). Each of these advancements contributes to the development of
new separation schemes that significantly reduce total process costs by
lowering energy consumption.

Optimizing the efficiency of distillation processes not only achieves
cost reductions but also results in substantial energy savings and envi-
ronmental benefits, aligning with broader sustainability goals. The
ongoing exploration of these advanced configurations underscores the
importance of energy-efficient designs in achieving both economic and
ecological benefits in chemical processing industries.

Early analyses of distillation synthesis and design were conducted by
pioneers such as Siirola et al. (1971) and Lockhart (1947). These foun-
dational studies highlighted the inherent challenges associated with
distillation, setting the stage for subsequent advancements. In recent
years, the focus has shifted towards reducing the energy consumption of
distillation processes through optimization strategies. This shift is driven
by the fact that distillation accounts for approximately 3 % of global
energy consumption, underscoring the importance of developing more
energy-efficient designs (Masoumi and Kadkhodaie, 2012).

To improve the performance of conventional and complex distilla-
tion schemes, both stochastic and deterministic optimization tools have
been implemented. These distillation schemes are typically modeled
using MESH (Material, Equilibrium, Summation, and Heat) equations,
which are subject to constraints on purity and recovery for each
component. These equations define the optimization problem as non-
convex, mixed-integer, highly nonlinear, multivariable, and con-
strained, making the optimization process particularly challenging.

Deterministic optimization strategies involve considering the distil-
lation sequence as superstructures, which can be solved using methods
such as mixed-integer linear programming (MILP), nonlinear program-
ming (NLP), or reduced models (Andrecovich, Westerberg, 1985; Chen
and Grossmann, 2017; Viswanathan, and Grossmann, 1993; Tres-
palacios and Grossmann, 2014; Bauer and Stichlmair, 1996; Yeomans
and Grossmann, 2000; Segovia-Hernandez et al., 2015). This approach
requires strong mathematical formulations to simplify the rigorous
models, and convergence is highly dependent on a good initial guess.
Additionally, significant computing time is often necessary to achieve a
solution, which can be a limiting factor in practical applications.

In contrast, stochastic algorithms can evaluate the objective function
as a black-box model, allowing for the rigorous modeling of MESH
equations to be maintained throughout the optimization process. This
flexibility makes stochastic algorithms particularly attractive for com-
plex, nonlinear problems. A diverse set of stochastic algorithms has been
applied to the optimization of distillation columns. For instance, simu-
lated annealing has been used for optimizing pressure swing distillation
(PSD) to find the minimum total annual cost for azeotropic (Wang et al.,
2016; Fulgueras et al., 2016; Fulgueras et al., 2018) and ternary mix-
tures (Zhu et al., 2016). Internally heat-integrated distillation column
(HIDiC) schemes have been optimized using Genetic Algorithms (Yala
et al., 2017) (GA) and combinations of GA with Particle Swarm Opti-
mization (PSO). Self-adapting dynamic differential evolution (SADDE)
has been applied to optimize distillation sequences for ternary systems
(Cui et al., 2019), while surrogate models have been used for global
optimization of both ideal and non-ideal distillation columns (KeBler
et al., 2019). Particle Swarm Optimization (PSO) has been employed for
the optimal design of dividing wall columns (Jia et al., 2017) (DWC) and
for response surface optimization of separation processes
(Weerachaipichasgul, et al., 2019). In the petroleum industry, ant col-
ony algorithms (Udoeyop et al., 2018) and surrogate-aided models (Xue
et al., 2019) have been used for optimizing oil production and other
(Cortez-Gonzalez et al., 2012) processes.

The literature indicates that various stochastic algorithms have been
employed in the optimization of separation systems, particularly in
distillation configurations (Ochoa-Estopier et al., 2015; Sudibyo et al.,
2015; Wang et al., 2012; Modla et al., 2010; Martins and Costa, 2010). A
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majority of these algorithms fall within the category of evolutionary
algorithms. Evolutionary algorithms are systematic approaches to
solving search and optimization problems that draw on principles of
natural evolution, including competition-based selection of the fittest
individuals, reproduction, and mutation to generate successive genera-
tions. Key examples of these bio-inspired stochastic methods, which
computationally emulate evolutionary mechanisms, include Differential
Evolution, Genetic Algorithm, Tabu Search, Bat Algorithm, and Ant
Colony Algorithm (Cheng et al., 2009; Gutiérrez-Antonio et al., 2014; Li
et al., 2015; Hanke and Li, 2000; Cardoso et al., 2000; Garcia-Herreros
et al., 2011; Modla and Lang, 2012; Cortez-Gonzalez et al., 2012).

In evolutionary algorithms, reproduction is typically the primary
operator. However, in the case of Differential Evolution, mutation is the
dominant operator, guiding the search space exploration to identify
promising regions with optimal values of the fitness function (Srinivas
and Rangaiah, 2007). These promising regions represent areas within
the search space where the best fitness function values have been
located, driving the optimization process toward high-quality solutions.

Despite their robustness and flexibility, stochastic algorithms often
incur high computational costs due to the numerous function evalua-
tions required to find an optimal solution. Among these, the differential
evolution (DE) algorithm stands out for its efficiency in solving bench-
mark and fundamental chemical engineering problems (Srinivas and
Rangaiah, 2007). Cortez-Gonzalez et al. (2023) presented a comparative
study of the Differential Evolution (DE) algorithm employing a weighted
sum constraint-handling technique against a self-adaptive con-
straint-handling technique in the optimization of separation schemes.
The results indicate that when a weighted sum constraint-handling
approach is utilized, the computational complexity of DE increases
substantially. Additionally, as the complexity of the separation scheme
escalates, so does the computational effort required for optimization.
While DE demonstrates efficiency across various case studies, its appli-
cation to large-scale problems significantly amplifies computational
demands, potentially limiting its practicality in such contexts.

Another class of stochastic algorithms, known as Estimation of Dis-
tribution Algorithms (EDAs), approximates the probability distribution
of the population during the optimization process (Larranaga and Loz-
ano, 2012). EDAs aim to reach the optimal solution by constructing a
probability model based on the best-performing subset of individuals in
each generation. This subset is then used to generate or simulate the
individuals of the subsequent generation, bypassing the need for tradi-
tional reproduction and mutation operators (Valdez et al., 2008).

Given these considerations, there is a clear need for robust stochastic
algorithms that not only deliver high performance but also reduce
computational time and numerical effort. Such advancements would
enhance the practicality and accessibility of these algorithms across a
broader range of chemical engineering applications, particularly in
distillation process optimization.

One notable EDA within this category is the Boltzmann Univariate
Marginal Distribution Algorithm (BUMDA), which is based on the
Boltzmann distribution. This distribution steers the population toward
the optimum, with the distinctive property that the maximum value of
the Boltzmann distribution aligns with the highest fitness value of the
objective function. BUMDA facilitates both exploration and intensifi-
cation in the search space: high variance initiates the exploration pro-
cess to identify promising regions, while reduced variance focuses
intensification efforts within these regions. Each design variable in
BUMDA is modeled by the Boltzmann distribution, creating a synergy
with the normal distribution. The Boltzmann distribution indicates the
optimal value of the design variable, while the normal distribution that
best approximates the Boltzmann distribution is employed to generate
new individuals for the next generation.

This study proposes a comparative analysis of the performance of the
evolutionary algorithm DE and the Boltzmann-based EDA, BUMDA.
Both algorithms are integrated with a self-adaptive constraint-handling
technique to enhance search space exploration. Specifically, we have



R. Murrieta-Duenas et al.

selected DE and BUMDA for coupling with the constraint-handling
technique introduced by Cortez-Gonzdlez et al. (2023). The compari-
son evaluates the algorithms based on computational effort, objective
function quality, and the numerical precision of the best value identified
by each algorithm. The study involves the optimization of several
distillation configurations: a binary column, a four-component distilla-
tion train and an intensified column for quaternary mixture separation.

To rigorously evaluate the performance of both algorithms, statisti-
cal analysis using resampling with replacement was conducted. This
approach provides a robust framework for comparing the efficiency and
effectiveness of the algorithms under various scenarios. Additionally, a
nonparametric hypothesis test called Bootstrap was performed to
determine if there were significant differences in the solutions found by
the two algorithms. The results of this comparative analysis aim to
highlight the advantages and potential drawbacks of each algorithm,
ultimately contributing to the development of more efficient and prac-
tical optimization tools for the chemical engineering community.

2. Optimization strategy

Distillation columns are pivotal in chemical engineering processes
for separating components based on their boiling points. Enhancing the
efficiency of these columns involves optimizing variables like feed
location and reflux ratio while ensuring product purity and operational
efficiency. Traditional optimization methods struggle with the nonlinear
and multivariate nature of distillation column optimization. In recent
years, stochastic optimization algorithms have emerged as powerful
tools capable of effectively tackling such complex problems. The opti-
mization of distillation columns presents a formidable challenge due to
the inherent complexity arising from both discrete and continuous
variables such as the number of stages, feed stage, and reflux ratio.
Rigorous modeling of these columns necessitates thermodynamic
models to accurately predict phase equilibrium, often characterized by
highly nonlinear behavior. Consequently, optimizing distillation col-
umns becomes a multivariate, non-convex, nonlinear problem con-
strained by thermodynamic and design limitations.

Differential Evolution (DE), introduced by Storn and Price in 1995,
has garnered significant attention in the field of chemical engineering
due to its versatility and robustness in optimizing complex separation
schemes (Storn and Price, 1995; Storn and Price, 1997). DE is classified
as a stochastic evolutionary algorithm that iteratively improves solu-
tions using mutation and crossover operators. Unlike gradient-based

Generate random initial population Np
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methods, DE is particularly suited for non-differentiable, non-convex,
and multi-modal optimization problems encountered in distillation
column design.

DE initializes a population of individuals randomly within the search
space defined by decision variables such as reflux ratio and stage effi-
ciencies. Fig. 1 shows the DE pseudocode. At each iteration, termed as a
generation, DE selects parents from the current population. Mutation, a
key operator in DE, enhances diversity by perturbing selected in-
dividuals using a strategy involving differential vectors scaled by a
mutation factor (F). This process generates trial solutions that are sub-
sequently recombined with the parent solutions using a crossover rate
(CR). Finally, the trial solutions replace parents if they exhibit superior
fitness, thereby driving the population towards optimal solutions.

The effectiveness of DE lies in its ability to explore diverse regions of
the search space while exploiting promising solutions to converge to-
wards global optimal. This is crucial in distillation column optimization,
where finding optimal operating conditions can significantly impact
process efficiency and profitability.

DE has been extensively applied in various domains of chemical
engineering, including distillation column design. Studies by Yerram-
setty and Murty (2008), Preechakul and Kheawhom (2009), Peng and
Cui (2015) have demonstrated DE’s robust performance in optimizing
distillation configurations under rigorous thermodynamic models.
These investigations highlight DE’s capability to handle complex deci-
sion spaces and nonlinear objective functions effectively.

2.1. BUMDA

The Boltzmann Univariate Marginal Distribution Algorithm
(BUMDA) was developed following the establishment of principles for
algorithms based on distribution estimates by Valdez et al. (2008).
Initially, BUMDA was designed to solve unconstrained optimization
problems in continuous variable search spaces.

BUMDA is based on the Boltzmann distribution, P(x), a key char-
acteristic of which is its implicit inclusion of the objective function. It
depends on two parameters, f and Z, where z is the normalization
parameter, represented in Eq. 1. This distribution can describe the tra-
jectory of the objective function, as the mode of the Boltzmann distri-
bution aligns with the optimum of the objective function. This ensures
that the search always moves towards the optimum, even in the presence
of clusters in infeasible regions during the optimization process. This
feature sets the BUMDA apart from all other stochastic algorithms used

Evaluate initial population in objective function

Do

While (Stop criteria)
For(j=1,j < Np;j++
Do

Generate 3 random integers (r1,72,1r3) € [1,Np]

with r1#r2#7r3#j

Generate a random integer i,,,q € (1,n)

For each i,

_ {Zi,r3,G + F * (Ziy1,6 — Zir2c) if rand(0,1) <CR
VijG+1 =

Zij,G
end For

Othrwise

Evaluate v;j ;41 in objective function

Replace v;j c with v;; g1 if Vi1 LS better

end For
end while

Fig. 1. Differential Evolution (DE) pseudocode.
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in chemical engineering.

P
/ dx
x 2

Since the Boltzmann distribution requires an infinite population to
find the solution, it is approximated by a normal distribution. The mean
(1) and variance (o)are calculated from the population of generation t-1,
to generate a curve Q(x,N). This curve is used to minimize the distance
between the normal distribution and the Boltzmann distribution using
Eq. 2.

@

P(x) =

Q) 4,

P(x) 2

KLpg = /P(x)log
X

Eq. 2 represents the Kullback-Leibler divergence, KLpg, defined as
the difference between the points of the normal distribution, Q(x), and
the Boltzmann distribution P(x). As a univariate algorithm, each
dimension requires a normal distribution. The BUMDA proposed by
Valdez et al. (2013) was tested with benchmark functions and compared
with algorithms based on distribution estimation through statistical
analysis. The comparison included univariate algorithms such as
BG-UMDA and multivariate algorithms such as EMNA-B, the Iterated
Density Estimation Evolutionary Algorithm (IDEA), the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES), and the Scaled Vari-
ance Adaptive Correlation IDEA (CT-AVS-IDEA). The results demon-
strated BUMDA as a powerful optimization tool excelling in its
application niche. Test problems were used to compare the convergence,
optimal approximation, and scalability of BUMDA with state-of-the-art
Estimation of Distribution Algorithms (EDAs). The results provided ev-
idence for BUMDA’s competitiveness compared to multivariate
algorithms.

Due to the advantages offered by BUMDA, it was chosen for the
optimization of distillation systems in chemical engineering. The opti-
mization of distillation columns is a constrained problem with both
continuous and discrete variables, and its search space is multimodal
and non-convex. These characteristics complicate finding the feasible
region and increase the likelihood of falling into a local optimum.
Currently, mechanisms coupled to stochastic optimization algorithms
are necessary to enhance their performance. Fig. 2 details the modifi-
cations and implementation of the BUMDA to optimize distillation
systems.

The first modification to the BUMDA was to extend its handling of
dimensions in continuous and discrete spaces. The individuals of the
first population are generated from a normal distribution bounded be-
tween the upper and lower limits of each variable. Each individual is
evaluated by the objective function. The best individual minimizes the
objective function and satisfies the constraints of the optimization
problem. The population of generation t is ordered from fittest to least
fit, and the best fraction of the population is selected to calculate the
mean and variance. These parameters are used to generate the t + 1. The
selected fraction can vary between 1/5 and 2/3; this paper determined
through tuning that 1/3 is optimal for the optimization of distillation
systems. Elitism is built into the BUMDA to avoid premature conver-
gence, extend exploration, and enhance search efficiency.

During the optimization process, the mean and variance are deter-
mined at each generation. The variance represents the variability of the
objective function relative to the population mean. A small variance
indicates that the algorithm has converged to the best value found so far,
prompting the intensification process. To improve exploration, variance
re-initialization has been proposed. This mechanism allows the search to
restart within the search space while retaining the best individual found
up to that point. It enables both exploration of the search space and
intensification in feasible zones during the optimization process. The
main advantage of variance re-initialization is BUMDA's ability to avoid
local optima. This process is repeated until the stopping criterion is met.

Recent research has positioned BUMDA as a competitor to
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Differential Evolution (DE) in optimizing distillation schemes. BUMDA
leverages Boltzmann distribution principles to enhance exploration and
exploitation capabilities, particularly in escaping local optima. One
notable feature of BUMDA is its self-adaptive constraint handling tech-
nique, which dynamically adjusts solution feasibility during the opti-
mization process.

BUMDA introduces a novel mechanism for handling constraints
based on the Boltzmann distribution, enabling effective exploration of
the solution space. By integrating a re-initialization strategy, BUMDA
mitigates the risk of premature convergence and enhances the algo-
rithm’s ability to discover globally optimal solutions. This feature is
particularly advantageous in distillation column optimization, where
the presence of multiple local optima poses a significant challenge to
traditional optimization techniques.

A comparative study between DE and BUMDA in distillation column
optimization highlights their respective strengths and weaknesses. DE
excels in scenarios requiring rapid convergence to near-optimal solu-
tions, leveraging efficient mutation and crossover operators. In contrast,
BUMDA’s emphasis on exploration through Boltzmann-based sampling
makes it resilient against premature convergence, improving its ability
to locate global optima in complex, multimodal landscapes.

To illustrate the application of DE and BUMDA in distillation column
optimization, consider three case studies involving the separation of a
binary mixture, a distillation train for separating four components, and
an intensified column for purifying a quaternary mixture. The distilla-
tion column model is described by the MESH equations (Material bal-
ance, Equilibrium relations, Summation equations, and Heat balance).
The objective is to minimize the total heat duty, subject to constraints on
product purity and recovery. The optimization variables include the
number of stages, feed stage location, and reflux ratio. The thermody-
namic properties are modeled using the Chao-Seader model to predict
phase equilibrium.

The DE is implemented with a population size of 50, a scaling factor
F= 0.8, and a crossover rate CR= 0.9. The BUMDA is implemented with
a population size of 60, a selection parameter of 1/3, and a variance re-
initialization threshold of 0.001. The optimization runs for 500 gener-
ations, and the results are compared in terms of heat duty, convergence
behavior, and computational efficiency.

Sensitivity analysis indicates that the performance of both algo-
rithms is influenced by the choice of algorithm parameters. For DE, the
scaling factor F and crossover rate CR significantly impact convergence
speed and solution quality. For BUMDA, the Boltzmann distribution
parameter and variance re-initialization threshold are critical for
maintaining diversity and avoiding premature convergence. This paper
compares two evolutionary algorithms: Differential Evolution (DE) and
the Boltzmann Univariate Marginal Distribution Algorithm (BUMDA)
with a self-adaptive constraints handling technique, applied to the
optimization of distillation schemes using a rigorous model (MESH
equations). The BUMDA, based on the Boltzmann distribution, is not
widely used in chemical engineering but is capable of escaping local
optima and finding feasible zones due to the incorporated variance re-
initialization mechanism.

2.2. Constraints handling technique

The case studies in this work involve both equality and inequality
constraints, necessitating a robust constraint-handling technique. Fig. 2
illustrates the pseudo code for the constraint-handling technique
implemented within the BUMDA, which is similarly applied to the DE.
The technique begins by assessing the feasibility of an individual,
rejecting infeasible ones through a "death penalty." The fitness function
is penalized based on the degree of constraint violation, which is pro-
portional to the violation magnitude and the deviation from the target
purity or recovery for each component. Additionally, a dynamic
threshold ¢ is introduced, converting an equality constraint into an
inequality constraint. This threshold e is halved once the entire
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1. Parameters of algorithm and stop criteria
Nsample < 30
Vmin < 0.001
Nselect = 1/3

Chemical Engineering Research and Design 214 (2025) 39-53

2. To generate the initial uniform population P, fort =0

e Test the individual's feasibility e Verify the individual's e Verify configuration
If N > Ny feasibility If Np > Ny
Np = Np — [Ny — Ng| f(z;, configl)
End if IfRR <0 else
RR = random() f(z;, config2)
End if End if

a) Evaluate the population
a. f(z) < AspenOne
b) Penalize the population
e  Constraints by purities
If purity < setpoint
w; « Selfadaptive handling technique
f@z) =f(z)+w; = f(z)
End if
¢) Ranking-truncate of population
Sort fitness function f(z;)

Truncate population

e  Constraints by recoveries
If recovery < setpoint
w; « Selfadaptive handling technique
f@) =f(z) +w; *f(z)
Endif

d) Calculate the approximation for y and the v using the selected set 1500

B Znselect x; g—(x)

- nselect —(x )

Znselect
i=1

g0 O — w)?

nselect (X )

- g(xnselect ) +1
a) Generate the individuals of the new model Q (x, t)
3. Fori=1to NEF,,,

tet+1
b) Evaluate the population

where: g(x;) = g(x)

f(z;) « AspenOne
¢) Penalize the population
e  Constraints by purities
If purity < setpoint
w; « Selfadaptive handling technique
f(@) = f(z) +w; = f(z)
End if
d) Ranking-truncate of population
Sort fitness function f(z;)
Truncate population

e) Calculate 4 and v using the selected set ngqpeq¢

e  Constraints by recoveries
If recovery < setpoint
w; « Selfadaptive handling technique
@) =f(z) +w; = f(z)
End if

nselect

_ x; g(x)
nselect _(X)

nselect

g0 O —w?

1 —
:lfe ect (xt)

where: g(x;) = g(x) — g(Xpserece ) + 1
f) Variance Reset
If vej < VUmin

1-7t,j = Vnmax
End if
2) Generate the individuals of the new model Q(x, t)

h) Insert the elite individual

Fig. 2. Pseudocode of the BUMDA for the optimization of distillation systems.
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population satisfies all constraints. Static penalties are also incorpo-
rated, where the penalty coefficient increases with the level of violation.
Another penalty factor increases when the total number of stages, as
defined by the user, is exceeded. This maximum stage number is
determined according to heuristic design rules dependent on the mixture
types. This procedure continues until the number of function evaluations
reaches the maximum allowed. This constraint-handling technique is
detailed by Cortez-Gonzalez et al. (2023). In this paper, the purities of
each component are within the range defined by the dynamic threshold
of the restriction handling technique. In each case study, the dynamic
threshold reached was 0.001, so the purity fluctuates in that proportion
with respect to the desired purity value for each component.

2.3. Optimization process

The optimization process starts with the master program (either the
DE or BUMDA) generating the initial population. The design variables
are sent to Excel, where their feasibility is verified, and these variables
are then used to call Aspen One for evaluating the fitness function. The
evaluated fitness value is returned to Excel to compute the constraints,
and the resultant value is sent to Matlab, where population sorting oc-
curs. This information is used to generate the next population. This
iterative process continues until the stopping criteria, defined by the
maximum number of function evaluations, is reached.

3. Cases studies

In chemical engineering, the modeling of distillation processes relies
heavily on MESH equations—an intricate system of nonlinear and
nonconvex equations that describe Material balance, Equilibrium re-
lations, Summation equations, and Heat balance for each stage within a
distillation column. These equations are interdependent, making the
MESH model highly complex and computationally demanding. Solving
MESH equations requires robust algorithms capable of handling the
inherent mathematical challenges associated with nonlinearity, non-
convexity, and high dimensionality, as even small-scale systems can
demand significant computational resources.

This study examines three distinct case scenarios: a binary distilla-
tion column, a distillation train, and a quaternary distillation column. In
each case, heat duty is selected as the objective function for evaluating
and comparing the performance of the optimization algorithms under
consideration. The heat duty, which represents the energy required by
the distillation system to achieve the desired separation of components,
is a crucial metric for process efficiency. Optimizing this value can lead
to significant energy savings and operational cost reductions, which are
essential in energy-intensive distillation processes.

By focusing on heat duty, the study aims to gauge the ability of each
optimization algorithm to navigate the MESH model’s complex solution
space effectively. Specifically, the comparison of heat duty values across
different optimization methods provides insights into each algorithm’s
capacity to locate feasible regions, avoid entrapment in local optima,
and minimize computational effort while achieving an optimal solution.
Because heat duty is independent of other design variables, it serves as
an unambiguous measure of each optimizer’s effectiveness, allowing for
a clear assessment of its performance without interference from sec-
ondary variables.

Overall, this study’s findings underscore the need for advanced al-
gorithms in distillation process optimization, where achieving optimal
separation outcomes through complex MESH modeling can have sub-
stantial impacts on both energy consumption and environmental sus-
tainability in chemical processing.

Case 1. Binary distillation column

A binary distillation column separates a mixture into two products.
The simplest sequence is shown in Fig. 3, where a feed stream enters the
column, separating two adjacent components into top (light component)
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Product

Cl1
Feed
Mixture
Cl
C2
Product
C2

Rebl

Fig. 3. Distillation column to split a binary mixture.

and bottom (heavy component) products. The column design considers
the total number of stages, the reflux ratio, and the feed stage, aiming to
minimize energy consumption. Although the reboiler duty energy is not
an optimization variable, it is crucial for the optimal design for a given
mixture and composition.

This study uses a binary mixture of butane and hexane with an
equimolar composition. The relative volatilities of the adjacent com-
ponents indicate that is easy separation is performed between n-butane,
A, and n-hexane, B. The Chao-Seader thermodynamic model is used,
with a feed flowrate of 100 kmol/h at 1 atm. The problem is defined as
follows:

Find vector

Z = (NT,NF,RR) 3)
To minimize fitness function

Q=f(2) )
Subject to constraint function

hlJ(Z) = xlt);r;etj =1,..., Mconstraints )

th (Z) = x:fget] =1,..., Mconstraints

and subject to boundary constraints

M <z <2'i=1,..,D ®)

2 <NF <NT

Where: NT,NF,RR are total stages, feed stage and reflux ratio of the
column respectively. In this problem the goal is to minimize the amount
of energy in the reboiler, Q. The individual is represented by Z and D
represents the number of variables or dimensions of the optimization
problem. The upper and lower bounds correspond to z{’ and z{",
respectively. The Eq. 4 is subject to the set of constraints represented in
Egs. 5-6; they are handled as inequality constraints establishing a small
deviation (tolerance) around the target defined, Xy, =0.99 and
Xiarger = 0.99, that corresponding to the desired purity and recovery for
each component. In a binary column, there exist four constraints; two of
them impose by the purities and the others for the purities of each
component. The equality constraints are treat as inequality constraints
defining a threshold (¢) that relaxes the fitness function penalization in
early generations, however the penalization becomes during optimiza-
tion process (Eq. 7).
For instance, the equality constraint:
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hj (Z) — kj =0
istreatedas :
|(hi(z) k)| < e

)

Where k is the X" or x}° for each component.

Thus, the constraint is evaluate to true when (h;(z) —k;) is inside the
interval| — ¢, + €.

Last constraint (Eq. 7) is derive from the sequence design, because of
the feed stage must be inside the range of the total stages of the column.

Results

Table 1 shows the best five individuals of each algorithm according
to the best fitness function value, all meeting the constraints. For the DE,
the best individual has a reflux ratio of 1.036, with 9 total stages and the
feed introduced at stage 3, requiring 2.768 GW/year to split the mixture.
Although individuals 3 and 4 have fewer total stages, their reboiler duty
and reflux ratio are approximately doubled. The worst individual re-
quires three times the total reboiler duty of the best due to a reflux ratio
of 5.258, despite only a one-stage difference in total stages. All five in-
dividuals meet all constraints.

For BUMDA, the best individual demands 2.623 GW/year of heat
duty with a design of 7 total stages, feeding at stage 4, and a reflux ratio
of 0.896. The feed stage remains constant at 4 in all five individuals,
with four individuals having 7 stages and one having 8. The best fitness
function value of 2.623 GW/year compared to the worst 2.919 GW/year
shows a slight variation due to a change in the reflux ratio from 0.896 to
1.171. All constraints are satisfied in all five individuals.

Case 2. Distillation train

A distillation train separates a multicomponent mixture into two
adjacent components in each column, with the number of columns
corresponding to n—1 for an n component mixture. For a four-
component mixture (C1, C2, C3, C4), the first column separates the
most volatile component (C1) at the top, with the rest at the bottom. The
second column separates C2, and the final column separates C3 and C4.
Fig. 4 illustrates the distillation train for a multicomponent mixture.

The mixture of four linear aliphatic hydrocarbons (C4-C6, C8) has a
feed flow rate of 100 kmol/h, composed of 0.05, 0.45, 0.45, and 0.05 for
n-butane, n-pentane, n-hexane, and n-octane, with purities 0.987, 0.98,
0.98 y 0.986, respectively. The mixture in our analysis is a mixture of
hydrocarbons; the intermediate components, B and C, are of normal
chain, and the light, A, and heavy, D. The feed composition contains a
high concentration of the two intermediate components (90 %). The
relative volatilities of the adjacent components indicate that the harder
separation is performed between n-pentane, B, and n-hexane, C; the
easiest cut is the light and heavy components: n-butane, A, and n-octane,
D. The Chao-Seader model is used for the equilibrium liquid-vapor.
Mathematically, the optimization problem is described by the 8-11
equations.

Find vector
Z= (NTBlsNFBlyNTBLNFBZyNTBByNFB(hR-RBhRRBZaR-RBB) (€)]

Table 1
Best five individuals obtained by DE and BUMDA Algorithms, Case 1.

Algorithm Exp Design variables Fitness function
Nt Ng RR Q (GW/year)

DE Best 9 3 1.036 2.769

El 8 6 1.234 2.992

E2 6 4 2.686 4.588

E3 6 3 2.868 4.787

E4 10 3 5.258 7.288
BUMDA Best 7 4 0.896 2.624

El 7 4 0.994 2.73

E2 8 4 1.041 2.769

E3 7 4 1.064 2.805

E4 7 4 1.171 2.92
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To minimize fitness function

Q=£2) ©
Subject to constraint function
glJ(Z) = x?:r;;et -+ Mconstraints 10)
&2 (Z) = x{:fget J =1, ..., Mconstraints
and subject to boundary constraints
B <z <gli=
2z <z <gzi=1,.,D an

2< NFBZ < NTBll = 17~~~7Bcolumm

In the optimization of distillation train the objective is find a vector Z
variables (Eq. 8) that minimize the total heat duty, Q (Eq. 9). This vector
is: the total stage number (NT), feed stage number (NF) and reflux ratio
(RR), of each column (B). In the vector Z, NT and NF are discrete vari-
ables and RR is continuous variable. In this model optimization, the
distillation train is constraint (Eq. 10) by to purity, x{irge and the re-
covery, Xiarget, Of each component Ncomponents: In addition, NF should
always be less than NT and each dimension, z; are between lower, zFand
upper z! boundaries (Eq. 11).

Results

Table 2 presents the five best solutions obtained by the DE and
BUMDA algorithms. For the DE, design variables vary significantly, with
a 3 GW/year difference between the best and worst fitness function
values. The reflux ratio values are similar across the three columns, with
column 1 having a minimum value of approximately 14. In all designs,
the total stages number exceeds 35 in at least one column. These in-
dividuals meet all constraints within the threshold value.

For the BUMDA, the worst fitness function value differs from the best
by 2.350 GW/year, with the best at 22.849 GW/year. All columns in the
five designs have fewer than 15 total stages. The feed stages are between
7 and 14, while the reflux ratio varies between 2.875 and 5.102.

Case 3. Optimization of a quaternary mixture in a single column

In this case, the goal is to separate a multicomponent mixture using
the intensified sequences propose by Errico et al. (2009), who supposes
that these configurations can reduce the energy consumption in relation
with the conventional sequences (i.e. distillation train).

The intensified sequences (Fig. 5) have a feed stream and four out
streams. The light component (C1) is obtained in the top column, the
intermediate components (C2 and C3) are withdrawer in the side
streams; while that the heavy component (C4) is removed in the bottom
column. The intensified sequences are subject to several design condi-
tions, such that the out stages of side streams must not be equal each
other, neither with the feed stream stage.

These intensified sequences have three configurations possible
(Fig. 5). The several configurations sequences, in this paper are named
topologies. In the first configuration the feed stage is above the side
streams; in the second topology the feed stage is between the side
streams; and in the last configuration the feed stream is below the side
streams. The main aim in these configurations is reduce the heat duty to
achieve separation, however it depends of the design variables, such as
total stages number (NT), feed stages (NF), location of the side streams
stages (NS; and NS) and reflux ratio (RR).

The case study examined in this sequence intensified is the separa-
tion aliphatic chain hydrocarbon mixture (n-butane, n-pentane, n-hex-
ane and n, octane) whose feed is made 0.30, 0.40, 0.25 and 0.05,
respectability. As design targets, it is required that the four components
achieve a recovery specification of 98 %; also, is required a purity of
98.7 % for the light component, 98.0 % for the intermediate compo-
nents and 98.6 % for the heavy component.

The mixture in our analysis is another mixture of hydrocarbons; the
light, A, intermediates, B and C, and the heavy component D, are of
normal chain. The feed composition contains a concentration of the light
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Fig. 4. Flowsheet of distillation train to split a four components mixture.
Table 2
The five Best individuals of the DE, distillation train, Case 2.
Algorithm Exp B1 B2 B3 Fitness function
NT NF RR NT NF RR NT NF RR Q (GW/year)
DE Best 18 11 20 34 21 3.946 30 19 1.482 9.426
El 41 12 14.418 47 27 4.634 35 28 2.135 10.48
E2 32 11 16.954 38 5 5.106 38 12 1.939 10.988
E3 44 14 16.881 27 17 3.229 15 7 3.988 11.511
E4 42 25 17.449 36 12 5.053 21 5 2.798 12.031
BUMDA Best 26 10 14.728 28 17 2 17 9 1.697 7.153
El 23 10 14.949 24 15 2.812 19 12 1.629 7.962
E2 27 16 14.411 30 7 2.411 16 10 2.311 8.348
E3 24 10 14.765 17 10 3.133 20 13 1.8 8.519
E4 23 12 15 16 11 4.004 15 7 1.8 9.500

component of 30 % (the second more abundant) and the heavy
component of 5 % (the less abundant). The relative volatilities indicate
that the separations are in general easy. In this case, the easiest cut is
among n-hexane (C)/n-octane (D); the less easy includes n-pentane (B),
and n-hexane (C).

In this case, the objective of the optimization is to minimize the total
reboiler duty (Q) in the column, as shown in the adaptation function.
The optimization problem is described by 12-15 equations.

Find vector

Z = (NT,NF,NS;,NS,, RR, topology) (12)
To minimize fitness function
Q=f(2) 13)

Subject to constraint function

46

glJ(Z) = x?;'rget ] =1,..., Mconstraints 14)

&2j (2) = x:::get j=1,..., Mconstraints
and subject to boundary constraints
ZEL) <z gzgu) i=1,2..D
<
o s <N as)

NF + NS; # NS,

Where: NTis the total number of stages; NFis the feeding stage; NS; and
NS, they are stages of extraction of the lateral currents and RR is the
reflux ratio. The problem is having five design variables, of which four
are discrete. In this problem, one more design variable was add, which is
the optimal configuration (topology) to perform the separation,
considering that for this case study there are three options. The topology
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Fig. 5. Flowsheet of intensified sequences to split a four components mixture.

of the designs varies according to the position of the feed and the lateral
currents. The authors define topology as the configuration that each
distillation system can have.

Despite knowing a priori that this design is highly inflexible, it allows

Table 3

gorithms, Case 3.

Comparative performance of best individuals obtained by DE and BUMDA al-

exploring the performance and versatility of the algorithm, since it re- Algorithm  Exp  Design variables Fitness function
quires handling two different thermodynamic constraints given by the NT NF NSI NS2 RR Q (GW/year)

feed stages and the lateral output currents. In this thermodynamic DE Best 68 36 23 52 70.232  30.861
constraint, it is established that none of the currents must have at least 1 El 73 49 18 59 70.632  40.083
stage difference between them. While all these currents must be less E2 73 38 23 57 70.502  40.083
than the total number of stages. Under this criterion, the algorithm E3 68 36 23 56 71.119 40353
. ) - E4 69 40 24 55 71.667  40.649
evaluated the performance of three different configurations and BUMDA Best 58 37 21 50 64.105  36.498
throughout the optimization decided which was the best design. El 71 37 24 49 64123  36.502
Results E2 71 37 25 54 64.747  36.843
In Table 3, a more detailed comparative study is made about the best E3 58 40 21 49 65.679  37.365
E4 62 32 21 42 65.870  37.462

and worst value obtained by BUMDA respect to the heat duty, against

the best design of DE. We can see that the best design obtained with the
BUMDA has 3 GW/year below best designs of the DE. Likewise, although
the heat duty does not represent a great difference, the BUMDA was able

47
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to find a design able to reduce into more than 30 % the size of the col-
umn. For its part, with respect to the topology’s optimization of the
intensified sequence, it is possible to see that both optimizers agreed that
the best configuration is one where the feed is located between the side
streams. The location of the feed stage is in the range of 37-40 stages,
while the side outputs of the best designs on both algorithms have
similar or even identical values (Side 1). The reflux ratio value found
varies in four units; however, this difference directly affects the amount
of energy required. Now, taking into account the purities obtained, it
must be emphasized that designs of the BUMDA are closer to the target
values established by the problem, reason enough to say that the design
is suitable to carry out the separation.

The comparative analysis of DE and BUMDA algorithms for opti-
mizing distillation processes reveals that both algorithms can effectively
find optimal solutions that meet all constraints. The BUMDA consis-
tently produces solutions with lower energy consumption and fewer
total stages compared to the DE. This study demonstrates the feasibility
and efficiency of employing advanced evolutionary algorithms for
optimizing complex distillation processes in the chemical industry. The
BUMDA, with its ability to maintain diversity in the population and
exploit the search space effectively, shows promise for broader appli-
cations in process optimization.

4. Discussion of results

In this paper is presents a comparison of the DE vs BUMDA. The two
algorithms are tested to optimize three problems: the binary column,
distillation train and a single column to separate four components. In
two cases the stop criteria is the total number function evaluations.
Besides, performing a comparison of statistical parameters with the
bootstrap function.

The simulations were realize with a PC computer with i7 processor
core, 16 GB of RAM and clock frequency at 2.8 GHz. The DE parameters
using in all cases were CR= 0.8 and F= 0.75, and 100 individuals pear
generations and 20,000 total function evaluations. For BUMDA use 60
individuals per generation with a total 3000 function evaluation and the
parameter of truncate population is 1/3. In this paper is presents a
comparison of the DE vs BUMDA. The two algorithms are tested to
optimize three problems: the binary column, distillation train and a
single column to separate four components. In two cases the stop criteria
is the total number function evaluations. Besides, performing a com-
parison of statistical parameters with the bootstrap function.

The simulations were realize with a PC computer with i7 processor
core, 16 GB of RAM and clock frequency at 2.8 GHz. The DE parameters
using in all cases were CR= 0.8 and F= 0.75, and 100 individuals pear
generations and 20,000 total function evaluations. For BUMDA use 60
individuals per generation with a total 3000 function evaluation and the
parameter of truncate population is 1/3. These parameters were ob-
tained through a tuning process.

4.1. Analysis performance of DE and BUMDA stochastic algorithms

Despite, that in last years, the use of the stochastic algorithms to
optimization of distillation systems in chemical engineering has been
increased, all researchers have been focused in applying algorithms
inspired in nature phenomena such as Genetic Algorithm, Simulated
Annealing and Differential evolution, obtaining good results but require
effort high computation and a long computing time finding one feasible
zone. Recently has been design a new generation of algorithms that are
based on the estimation of the distribution, called Evolutionary distri-
bution algorithms (EDAs).

For this reason, the aim main of this paper is the performance
comparison between DE and BUMDA. The first algorithm is inspired in
natural phenomena and the second algorithm is based in estimation of
Boltzmann distribution. We compare the computing time, quality solu-
tion and avoid getting trapped by local minima. The statistical analysis
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of the results is realized and determinate which is the better algorithm to
optimize distillation systems.

Fig. 6 shows the behavior of the DE and BUMDA algorithms
throughout the optimization process for the three case studies analyzed.
On the left side are the graphs of the BUMDA and on the right side are
those of the DE. For the DE, a similar behavior is observed in the three
case studies. Graphs b, d, and f describe a good exploration process and
yield good quality solutions that satisfy the constraints imposed by each
problem.

On the other hand, the BUMDA describes a very different behavior
from that presented by the DE. For all three cases, the BUMDA shows
different convergence zones to feasible solutions. In most cases, the
feasible zone found improves the objective function value as the number
of function evaluations increases. With this behavior it is evident that
the BUMDA is capable of departing from local optima. BUMDA during
the first generations performs a wide exploration process. When it finds
a feasible area, it intensifies the search until the threshold value of the
variance is maintained for 5 generations. When this happens and the
total number of function evaluations has not been reached, it activates
the variance re-initialization mechanism that allows to widen again the
search space and eventually, to find a better feasible zone, as shown in
graphs a, ¢ and e. This behavior could be observed during the optimi-
zation process in the 30 experiments performed, for each algorithm in
each case of study.

In this paper, an experiment represents an optimization run that is
performed for a given algorithm and a given case study. We decided to
perform 30 experiments for each case study, to perform the comparison
of the DE and BUMDA algorithms, through statistical tests.

Fig. 7 shows a representative sample of the best solutions found by
both algorithms for each case study. The algorithms are compared in
terms of the total number of stages and the total energy required in the
distillation system in the Fig. 7a, 7c and 7e. The blue points represent the
solutions of the DE and the pink points belong to the BUMDA. A blue line
and a pink line have been added to represent the average DE and
BUMDA, respectively. From this graph, it can be seen that the best so-
lutions found by BUMDA outperform those of the DE due to the fact that
most of the designs offer lower values in heat duty and total number of
stages. Therefore, the mean value of BUMDA is lower than the mean
value of DE solutions. This behavior is observed in the three case studies
analyzed.

On the other hand, these graphs show the importance of handling the
total number of stages as a constraint within the optimization problem in
distillation columns. When the number of stages in a column decreases,
the heat duty increases substantially. Therefore it is necessary to have
tools that offer designs that decrease both the heat duty and the total
number of stages, as shown in Fig. 7a, 7c and 7e.

As a complement, Fig. 7b, 7d and 7f shows the box plots for each case
study. In this figure, the red line shows the median of each algorithm.
This analysis was performed on the 30 solutions corresponding to each
experiment. In all three cases, the median of the BUMDA is better than
that of the DE. In the case of the quaternary column, Fig. 7f, the DE
shows outliers due to the complexity of the distillation system. While the
BUMDA shows a bias to the left as its values are more clustered below
the median. For the binary column (Fig. 7b), the BUMDA shows a uni-
form distribution of the data so that the mean, mode and median are
very similar, while DE shows a bias to the left. Finally, for the distillation
column, DE shows a uniform distribution and BUMDA shows a skew to
the right (Fig. 7d).

To make the comparative analysis between the results obtained by
the BUMDA and DE algorithms more reliable, the nonparametric sta-
tistical test Bootstrap, which is one of the most widely accepted
resampling statistical tests, has been implemented. This test has been
used to compare the performance of evolutionary algorithms on
benchmark functions (Segovia-Dominguez et al., 2020).

The advantage of Bootstrap is that, being a non-parametric statistical
test, it requires assuming theoretical a priori formulations (hypotheses)
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Fig. 6. Performance of the BUMDA and DE throughout the optimization process.

and can be used for any estimator (mean, median, standard deviation).

For the

Case 1.

analysis proposed in this study, 3 cases are proposed:

The null hypothesis is accepted, defining that the second al-

gorithm performs better.

Ho:py —

Hy 2 OHy = jiy —py <0
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Case 2. The null hypothesis is accepted, there is no substantial evi-
dence of difference in the performance of the algorithms.

Ho: py —pp = OHy s iy —ptp 7 0

Case 3. The null hypothesis is accepted; the first algorithm has a better
performance.
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Fig. 7. Representative solutions of the experiments performed for the DE and BUMDA algorithms, in each case study.

Ho : py —py > OHy : pty — iy < 0.

This hypothesis was tested using the three cases studied. The 30
solutions found were use as input to Bootstrap tool. The application of
the Bootstrap test to determine if there are significant differences in the
quality of the set of solutions yielded by each of the algorithms and in
turn, if these differences exist, to determine which of the two algorithms
has a better performance. In the hypothesis test, pi; and py represent the

50

mean of DE and BUMDA, respectively.

These data were entered into the Bootstrap statistical test to perform
the statistical comparison of the results with the mean being the test
statistic. The comparison was performed only between ED and BUMDA.
For the ED-BUMDA algorithm pair, the statistical tool shows that: there
is a significant difference in the solutions found by each algorithm and
statistically the best optimal solutions are found by the BUMDA, in all
cases. The p-values obtained are 0.9984, 0.9993 and 0.9988 for the first
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hypothesis proposed; for binary column, distillation train and quater-
nary column, respectively. Based on the data analysis for the specific
problem shown, it is possible to state with 95 % confidence that the
BUMDA performs better, so that it finds better solutions than Differential
Evolution.

Table 4 shows several parameters that allow us to compare both the
performance of the algorithms and the results obtained in the bootstrap
statistical test. The first comparative parameter is the number of func-
tion evaluations (NEF). In all cases, DE evaluated 20,000 functions and
BUMDA 3000, corresponding to 200 and 50 generations, respectively.
This significantly reduces the computational complexity of BUMDA. The
solution of the distillation systems varies between 8 and 14 h for the
most complex case. For DE, the solution time is between 47 and 112 h.

Respect at the quality solution, we consider two issues:

e Fitness function: Is the total energy consumption in the distillation
system. The value obtained by BUMDA is better than DE, in all cases.
In the major of the cases study, the worst solution obtained by
BUMDA requires the same energy consumption that the best solution
of DE.

Total stages number: It is the sum of the total number of stages of all
the columns in the distillation system. In general, BUMDA give
design that requires less total stages, so that the size of column is
small, in all cases.

On the other hand, to perform the bootstrap test, the level alpha in
the 0.05 and in all cases of study when comparing DE with BUMDA, the
result shows that BUMDA is better than DE.

Fig. 8 shows radar plots for each case study. The axes correspond to
the design variables and the fitness function (total heat duty). These
values have been normalized in each dimension with respect to the
maximum value found. The blue line corresponds to the best design
obtained by DE and the orange line represents the best solution found by
BUMDA. In all cases, it is evident that the best solution obtained by
BUMDA is better than the best solution obtained by DE. It is also seen
that as the distillation system becomes more complex, the BUMDA
shows better performance, significantly improving the design obtained
by DE, as observed in Fig. 8b).

Finally, based on the results obtained with both algorithms in the
three case studies, the stochastic algorithm based in Boltzmann distri-
bution, BUMDA implemented by us, is better than DE, due that offers
best solutions in less computing time and requires low effort of
computation. Addition the performance in optimization process of
BUMDA, presents a high convergence in best feasible zone and is iden-
tified clearly an intensification zone that means improve quality of so-
lutions. According results, the BUMDA is capable of explore in all search
space and it finds several feasible zones and starts the intensification
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process in the best feasible zone. This study verifies that the approach
presented in this paper, BUMDA with self-adaptive constraints handling
technique, is a powerful and robust tool capable of optimizing distilla-
tion systems in chemical engineering and potentially useful in other
engineering areas.

The numerical results reveal that both DE and BUMDA achieve sig-
nificant heat duty savings. BUMDA converges faster and reaches a lower
heat duty than DE in most cases. However, BUMDA demonstrates better
robustness in escaping local optima and finding feasible solutions for
more complex problems with stringent constraints.

The convergence plots show that DE improves the solution quality in
the first generations, but the progress slows down as it approaches the
optimum. In contrast, BUMDA exhibits a more gradual improvement
due to being able to avoid local optimum, throughout the optimization
process. The final heat duty values for DE and BUMDA shows significant
differences, BUMDA outperforming DE in all cases studied. In addition,
the BUMDA shows a major performance in complex problems.

5. Conclusions

This study demonstrates the effectiveness of the Boltzmann Univar-
iate Marginal Distribution Algorithm (BUMDA), based on the Boltzmann
distribution, as a powerful optimization tool for distillation processes
with constraints in chemical engineering. When coupled with a self-
adaptive constraint handling technique, BUMDA efficiently identifies
the optimal solution by aligning the maximum of the Boltzmann dis-
tribution with the best fitness function value. The algorithm signifi-
cantly reduces computational effort, time, and the number of function
evaluations required for optimizing complex separation schemes.

The variance re-initialization feature of BUMDA allows for effective
exploration of the search space, intensification in promising regions, and
the ability to escape local optima. A comparative analysis with Differ-
ential Evolution (DE) highlights substantial differences in both the time
to obtain a solution and the quality of the results. BUMDA consistently
outperforms DE in terms of solution quality across all the distillation
systems analyzed, achieving heat duty reductions of 5-20 %, with the
highest reductions observed in systems with greater numbers of design
variables.

Moreover, the statistical results from the bootstrap test confirm that
BUMDA provides the best objective function values in all cases studied.
These findings underscore the potential of BUMDA as an effective and
efficient optimization tool for distillation system design, particularly
when dealing with problems involving a large number of design
variables.

Table 4
Performance comparison table between BUMDA and DE algorithms.
Parameter Case 1 Case 2 Case 3
DE BUMDA DE BUMDA DE BUMDA
Performance NEF 20,000 3000 20,000 3000 20,000 3000
algorithms Generations 200 50 200 50 200 50
Operators F=0.8,CR=0.75 o=1/3 F=0.8,CR=0.75 o=1/3 F=0.8,CR=0.75 o=1/3
Re-init of variance Re-init of variance Re-init of variance
Time solution (h) 47 8 94 12 112 14
NT 9 7 82 71 68 58
Q (GW/year) 2.769 2.624 9.426 7.153 39.861 36.498
Bootstrapp testing P value 0.9984 0.9993 0.9988
alpha 0.05 0.05 0.05
Ho:py —py >0 Accepted Accepted Accepted
Hyipy —py <0 (DE equal or worse than BUMDA) (DE equal or worse than BUMDA) (DE equal or worse than BUMDA)
Ho:py —py =0 Rejected Rejected Rejected
Hy:py—py #0 (DE and BUMDA are different) (DE and BUMDA are different) (DE and BUMDA are different)
Hoy:pyg—py >0 Rejected Rejected Rejected
Hy:py—py <0 (BUMDA better than DE) (BUMDA better than DE) (BUMDA better than DE)
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Fig. 8. Comparative analysis between the best designs found by DE and
BUMDA algorithms, for each case study.
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