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A B S T R A C T

Evolutionary algorithms, which emulate natural selection and species evolution, have long been applied to 
process optimization in chemical engineering. While these methods have demonstrated robustness to various 
optimization challenges, their computational requirements escalate with increasing case study complexity. This 
paper investigates the application of the Boltzmann Univariate Marginal Distribution Algorithm (BUMDA) as an 
optimization tool for distillation processes. BUMDA is a distribution estimation algorithm (EDA) based on the 
Boltzmann distribution, characterized by its alignment to the optimal value of the fitness function. The perfor
mance of BUMDA is benchmarked against Differential Evolution (DE), a widely adopted algorithm in chemical 
engineering optimization. Both algorithms are coupled with a self-adaptive constraint handling technique. The 
optimization objective is to minimise the total heat input in three different distillation systems while satisfying 
purity and recovery constraints. Results indicate that BUMDA outperforms DE, yielding superior solution quality, 
reduced computational complexity and lower computing time. Furthermore, BUMDA effectively avoids local 
minima entrapment. A statistical comparison of the algorithms using bootstrap test, confirms the enhanced 
performance of BUMDA over DE.

1. Introduction

In the realm of chemical engineering, optimization is a critical tool 
for designing systems that utilize resources efficiently, thereby mini
mizing environmental impacts. The complexity of chemical engineering 
problems stems from their highly nonlinear, multivariable nature, 
encompassing both discrete and continuous variables, and often bound 
by thermodynamic or design constraints. These challenges necessitate 
robust and efficient optimization tools to achieve feasible and optimal 
solutions [Kim and Wankat, 2004; Hu et al., 2022].

Distillation is among the most widely utilized separation processes in 
chemical engineering, playing a critical role in purifying multicompo
nent mixtures, especially within the chemical and petrochemical 

industries. As a highly energy-intensive operation, distillation accounts 
for a substantial portion of energy consumption in industrial processing, 
making energy optimization an essential focus within process design. 
Considerable research has therefore been devoted to improving the 
energy efficiency of distillation configurations, given that the optimal 
design of multicomponent distillation systems remains one of the most 
complex and challenging issues in process engineering.

To address these challenges, researchers have introduced innovative 
designs aimed at enhancing efficiency and reducing energy re
quirements. These designs include advanced configurations such as 
divided-wall columns, thermally coupled systems, and thermodynami
cally equivalent configurations. In addition, intensified operation con
cepts, such as the integration of reactive stages directly within 
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distillation columns, have been proposed to further enhance energy 
performance (Weinfeld et al., 2018; Amminudin, et al., 2001; Petlyuk, 
1965). Each of these advancements contributes to the development of 
new separation schemes that significantly reduce total process costs by 
lowering energy consumption.

Optimizing the efficiency of distillation processes not only achieves 
cost reductions but also results in substantial energy savings and envi
ronmental benefits, aligning with broader sustainability goals. The 
ongoing exploration of these advanced configurations underscores the 
importance of energy-efficient designs in achieving both economic and 
ecological benefits in chemical processing industries.

Early analyses of distillation synthesis and design were conducted by 
pioneers such as Siirola et al. (1971) and Lockhart (1947). These foun
dational studies highlighted the inherent challenges associated with 
distillation, setting the stage for subsequent advancements. In recent 
years, the focus has shifted towards reducing the energy consumption of 
distillation processes through optimization strategies. This shift is driven 
by the fact that distillation accounts for approximately 3 % of global 
energy consumption, underscoring the importance of developing more 
energy-efficient designs (Masoumi and Kadkhodaie, 2012).

To improve the performance of conventional and complex distilla
tion schemes, both stochastic and deterministic optimization tools have 
been implemented. These distillation schemes are typically modeled 
using MESH (Material, Equilibrium, Summation, and Heat) equations, 
which are subject to constraints on purity and recovery for each 
component. These equations define the optimization problem as non- 
convex, mixed-integer, highly nonlinear, multivariable, and con
strained, making the optimization process particularly challenging.

Deterministic optimization strategies involve considering the distil
lation sequence as superstructures, which can be solved using methods 
such as mixed-integer linear programming (MILP), nonlinear program
ming (NLP), or reduced models (Andrecovich, Westerberg, 1985; Chen 
and Grossmann, 2017; Viswanathan, and Grossmann, 1993; Tres
palacios and Grossmann, 2014; Bauer and Stichlmair, 1996; Yeomans 
and Grossmann, 2000; Segovia-Hernández et al., 2015). This approach 
requires strong mathematical formulations to simplify the rigorous 
models, and convergence is highly dependent on a good initial guess. 
Additionally, significant computing time is often necessary to achieve a 
solution, which can be a limiting factor in practical applications.

In contrast, stochastic algorithms can evaluate the objective function 
as a black-box model, allowing for the rigorous modeling of MESH 
equations to be maintained throughout the optimization process. This 
flexibility makes stochastic algorithms particularly attractive for com
plex, nonlinear problems. A diverse set of stochastic algorithms has been 
applied to the optimization of distillation columns. For instance, simu
lated annealing has been used for optimizing pressure swing distillation 
(PSD) to find the minimum total annual cost for azeotropic (Wang et al., 
2016; Fulgueras et al., 2016; Fulgueras et al., 2018) and ternary mix
tures (Zhu et al., 2016). Internally heat-integrated distillation column 
(HIDiC) schemes have been optimized using Genetic Algorithms (Yala 
et al., 2017) (GA) and combinations of GA with Particle Swarm Opti
mization (PSO). Self-adapting dynamic differential evolution (SADDE) 
has been applied to optimize distillation sequences for ternary systems 
(Cui et al., 2019), while surrogate models have been used for global 
optimization of both ideal and non-ideal distillation columns (Keßler 
et al., 2019). Particle Swarm Optimization (PSO) has been employed for 
the optimal design of dividing wall columns (Jia et al., 2017) (DWC) and 
for response surface optimization of separation processes 
(Weerachaipichasgul, et al., 2019). In the petroleum industry, ant col
ony algorithms (Udoeyop et al., 2018) and surrogate-aided models (Xue 
et al., 2019) have been used for optimizing oil production and other 
(Cortez-Gonzalez et al., 2012) processes.

The literature indicates that various stochastic algorithms have been 
employed in the optimization of separation systems, particularly in 
distillation configurations (Ochoa-Estopier et al., 2015; Sudibyo et al., 
2015; Wang et al., 2012; Modla et al., 2010; Martins and Costa, 2010). A 

majority of these algorithms fall within the category of evolutionary 
algorithms. Evolutionary algorithms are systematic approaches to 
solving search and optimization problems that draw on principles of 
natural evolution, including competition-based selection of the fittest 
individuals, reproduction, and mutation to generate successive genera
tions. Key examples of these bio-inspired stochastic methods, which 
computationally emulate evolutionary mechanisms, include Differential 
Evolution, Genetic Algorithm, Tabu Search, Bat Algorithm, and Ant 
Colony Algorithm (Cheng et al., 2009; Gutiérrez-Antonio et al., 2014; Li 
et al., 2015; Hanke and Li, 2000; Cardoso et al., 2000; García-Herreros 
et al., 2011; Modla and Lang, 2012; Cortez-Gonzalez et al., 2012).

In evolutionary algorithms, reproduction is typically the primary 
operator. However, in the case of Differential Evolution, mutation is the 
dominant operator, guiding the search space exploration to identify 
promising regions with optimal values of the fitness function (Srinivas 
and Rangaiah, 2007). These promising regions represent areas within 
the search space where the best fitness function values have been 
located, driving the optimization process toward high-quality solutions.

Despite their robustness and flexibility, stochastic algorithms often 
incur high computational costs due to the numerous function evalua
tions required to find an optimal solution. Among these, the differential 
evolution (DE) algorithm stands out for its efficiency in solving bench
mark and fundamental chemical engineering problems (Srinivas and 
Rangaiah, 2007). Cortez-González et al. (2023) presented a comparative 
study of the Differential Evolution (DE) algorithm employing a weighted 
sum constraint-handling technique against a self-adaptive con
straint-handling technique in the optimization of separation schemes. 
The results indicate that when a weighted sum constraint-handling 
approach is utilized, the computational complexity of DE increases 
substantially. Additionally, as the complexity of the separation scheme 
escalates, so does the computational effort required for optimization. 
While DE demonstrates efficiency across various case studies, its appli
cation to large-scale problems significantly amplifies computational 
demands, potentially limiting its practicality in such contexts.

Another class of stochastic algorithms, known as Estimation of Dis
tribution Algorithms (EDAs), approximates the probability distribution 
of the population during the optimization process (Larrañaga and Loz
ano, 2012). EDAs aim to reach the optimal solution by constructing a 
probability model based on the best-performing subset of individuals in 
each generation. This subset is then used to generate or simulate the 
individuals of the subsequent generation, bypassing the need for tradi
tional reproduction and mutation operators (Valdez et al., 2008).

Given these considerations, there is a clear need for robust stochastic 
algorithms that not only deliver high performance but also reduce 
computational time and numerical effort. Such advancements would 
enhance the practicality and accessibility of these algorithms across a 
broader range of chemical engineering applications, particularly in 
distillation process optimization.

One notable EDA within this category is the Boltzmann Univariate 
Marginal Distribution Algorithm (BUMDA), which is based on the 
Boltzmann distribution. This distribution steers the population toward 
the optimum, with the distinctive property that the maximum value of 
the Boltzmann distribution aligns with the highest fitness value of the 
objective function. BUMDA facilitates both exploration and intensifi
cation in the search space: high variance initiates the exploration pro
cess to identify promising regions, while reduced variance focuses 
intensification efforts within these regions. Each design variable in 
BUMDA is modeled by the Boltzmann distribution, creating a synergy 
with the normal distribution. The Boltzmann distribution indicates the 
optimal value of the design variable, while the normal distribution that 
best approximates the Boltzmann distribution is employed to generate 
new individuals for the next generation.

This study proposes a comparative analysis of the performance of the 
evolutionary algorithm DE and the Boltzmann-based EDA, BUMDA. 
Both algorithms are integrated with a self-adaptive constraint-handling 
technique to enhance search space exploration. Specifically, we have 
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selected DE and BUMDA for coupling with the constraint-handling 
technique introduced by Cortez-González et al. (2023). The compari
son evaluates the algorithms based on computational effort, objective 
function quality, and the numerical precision of the best value identified 
by each algorithm. The study involves the optimization of several 
distillation configurations: a binary column, a four-component distilla
tion train and an intensified column for quaternary mixture separation.

To rigorously evaluate the performance of both algorithms, statisti
cal analysis using resampling with replacement was conducted. This 
approach provides a robust framework for comparing the efficiency and 
effectiveness of the algorithms under various scenarios. Additionally, a 
nonparametric hypothesis test called Bootstrap was performed to 
determine if there were significant differences in the solutions found by 
the two algorithms. The results of this comparative analysis aim to 
highlight the advantages and potential drawbacks of each algorithm, 
ultimately contributing to the development of more efficient and prac
tical optimization tools for the chemical engineering community.

2. Optimization strategy

Distillation columns are pivotal in chemical engineering processes 
for separating components based on their boiling points. Enhancing the 
efficiency of these columns involves optimizing variables like feed 
location and reflux ratio while ensuring product purity and operational 
efficiency. Traditional optimization methods struggle with the nonlinear 
and multivariate nature of distillation column optimization. In recent 
years, stochastic optimization algorithms have emerged as powerful 
tools capable of effectively tackling such complex problems. The opti
mization of distillation columns presents a formidable challenge due to 
the inherent complexity arising from both discrete and continuous 
variables such as the number of stages, feed stage, and reflux ratio. 
Rigorous modeling of these columns necessitates thermodynamic 
models to accurately predict phase equilibrium, often characterized by 
highly nonlinear behavior. Consequently, optimizing distillation col
umns becomes a multivariate, non-convex, nonlinear problem con
strained by thermodynamic and design limitations.

Differential Evolution (DE), introduced by Storn and Price in 1995, 
has garnered significant attention in the field of chemical engineering 
due to its versatility and robustness in optimizing complex separation 
schemes (Storn and Price, 1995; Storn and Price, 1997). DE is classified 
as a stochastic evolutionary algorithm that iteratively improves solu
tions using mutation and crossover operators. Unlike gradient-based 

methods, DE is particularly suited for non-differentiable, non-convex, 
and multi-modal optimization problems encountered in distillation 
column design.

DE initializes a population of individuals randomly within the search 
space defined by decision variables such as reflux ratio and stage effi
ciencies. Fig. 1 shows the DE pseudocode. At each iteration, termed as a 
generation, DE selects parents from the current population. Mutation, a 
key operator in DE, enhances diversity by perturbing selected in
dividuals using a strategy involving differential vectors scaled by a 
mutation factor (F). This process generates trial solutions that are sub
sequently recombined with the parent solutions using a crossover rate 
(CR). Finally, the trial solutions replace parents if they exhibit superior 
fitness, thereby driving the population towards optimal solutions.

The effectiveness of DE lies in its ability to explore diverse regions of 
the search space while exploiting promising solutions to converge to
wards global optimal. This is crucial in distillation column optimization, 
where finding optimal operating conditions can significantly impact 
process efficiency and profitability.

DE has been extensively applied in various domains of chemical 
engineering, including distillation column design. Studies by Yerram
setty and Murty (2008), Preechakul and Kheawhom (2009), Peng and 
Cui (2015) have demonstrated DE’s robust performance in optimizing 
distillation configurations under rigorous thermodynamic models. 
These investigations highlight DE’s capability to handle complex deci
sion spaces and nonlinear objective functions effectively.

2.1. BUMDA

The Boltzmann Univariate Marginal Distribution Algorithm 
(BUMDA) was developed following the establishment of principles for 
algorithms based on distribution estimates by Valdez et al. (2008). 
Initially, BUMDA was designed to solve unconstrained optimization 
problems in continuous variable search spaces.

BUMDA is based on the Boltzmann distribution, P(x), a key char
acteristic of which is its implicit inclusion of the objective function. It 
depends on two parameters, β and Z, where z is the normalization 
parameter, represented in Eq. 1. This distribution can describe the tra
jectory of the objective function, as the mode of the Boltzmann distri
bution aligns with the optimum of the objective function. This ensures 
that the search always moves towards the optimum, even in the presence 
of clusters in infeasible regions during the optimization process. This 
feature sets the BUMDA apart from all other stochastic algorithms used 

Fig. 1. Differential Evolution (DE) pseudocode.
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in chemical engineering. 

P(x) =
∫

x

eβ.f(x)

z
dx (1) 

Since the Boltzmann distribution requires an infinite population to 
find the solution, it is approximated by a normal distribution. The mean 
(μ) and variance (σ)are calculated from the population of generation t-1, 
to generate a curve Q(x,N). This curve is used to minimize the distance 
between the normal distribution and the Boltzmann distribution using 
Eq. 2. 

KLPQ =

∫

x
P(x)log

Q(x)
P(x)

dx (2) 

Eq. 2 represents the Kullback-Leibler divergence, KLPQ, defined as 
the difference between the points of the normal distribution, Q(x), and 
the Boltzmann distribution P(x). As a univariate algorithm, each 
dimension requires a normal distribution. The BUMDA proposed by 
Valdez et al. (2013) was tested with benchmark functions and compared 
with algorithms based on distribution estimation through statistical 
analysis. The comparison included univariate algorithms such as 
BG-UMDA and multivariate algorithms such as EMNA-B, the Iterated 
Density Estimation Evolutionary Algorithm (IDEA), the Covariance 
Matrix Adaptation Evolution Strategy (CMA-ES), and the Scaled Vari
ance Adaptive Correlation IDEA (CT-AVS-IDEA). The results demon
strated BUMDA as a powerful optimization tool excelling in its 
application niche. Test problems were used to compare the convergence, 
optimal approximation, and scalability of BUMDA with state-of-the-art 
Estimation of Distribution Algorithms (EDAs). The results provided ev
idence for BUMDA’s competitiveness compared to multivariate 
algorithms.

Due to the advantages offered by BUMDA, it was chosen for the 
optimization of distillation systems in chemical engineering. The opti
mization of distillation columns is a constrained problem with both 
continuous and discrete variables, and its search space is multimodal 
and non-convex. These characteristics complicate finding the feasible 
region and increase the likelihood of falling into a local optimum. 
Currently, mechanisms coupled to stochastic optimization algorithms 
are necessary to enhance their performance. Fig. 2 details the modifi
cations and implementation of the BUMDA to optimize distillation 
systems.

The first modification to the BUMDA was to extend its handling of 
dimensions in continuous and discrete spaces. The individuals of the 
first population are generated from a normal distribution bounded be
tween the upper and lower limits of each variable. Each individual is 
evaluated by the objective function. The best individual minimizes the 
objective function and satisfies the constraints of the optimization 
problem. The population of generation t is ordered from fittest to least 
fit, and the best fraction of the population is selected to calculate the 
mean and variance. These parameters are used to generate the t + 1. The 
selected fraction can vary between 1/5 and 2/3; this paper determined 
through tuning that 1/3 is optimal for the optimization of distillation 
systems. Elitism is built into the BUMDA to avoid premature conver
gence, extend exploration, and enhance search efficiency.

During the optimization process, the mean and variance are deter
mined at each generation. The variance represents the variability of the 
objective function relative to the population mean. A small variance 
indicates that the algorithm has converged to the best value found so far, 
prompting the intensification process. To improve exploration, variance 
re-initialization has been proposed. This mechanism allows the search to 
restart within the search space while retaining the best individual found 
up to that point. It enables both exploration of the search space and 
intensification in feasible zones during the optimization process. The 
main advantage of variance re-initialization is BUMDA’s ability to avoid 
local optima. This process is repeated until the stopping criterion is met.

Recent research has positioned BUMDA as a competitor to 

Differential Evolution (DE) in optimizing distillation schemes. BUMDA 
leverages Boltzmann distribution principles to enhance exploration and 
exploitation capabilities, particularly in escaping local optima. One 
notable feature of BUMDA is its self-adaptive constraint handling tech
nique, which dynamically adjusts solution feasibility during the opti
mization process.

BUMDA introduces a novel mechanism for handling constraints 
based on the Boltzmann distribution, enabling effective exploration of 
the solution space. By integrating a re-initialization strategy, BUMDA 
mitigates the risk of premature convergence and enhances the algo
rithm’s ability to discover globally optimal solutions. This feature is 
particularly advantageous in distillation column optimization, where 
the presence of multiple local optima poses a significant challenge to 
traditional optimization techniques.

A comparative study between DE and BUMDA in distillation column 
optimization highlights their respective strengths and weaknesses. DE 
excels in scenarios requiring rapid convergence to near-optimal solu
tions, leveraging efficient mutation and crossover operators. In contrast, 
BUMDA’s emphasis on exploration through Boltzmann-based sampling 
makes it resilient against premature convergence, improving its ability 
to locate global optima in complex, multimodal landscapes.

To illustrate the application of DE and BUMDA in distillation column 
optimization, consider three case studies involving the separation of a 
binary mixture, a distillation train for separating four components, and 
an intensified column for purifying a quaternary mixture. The distilla
tion column model is described by the MESH equations (Material bal
ance, Equilibrium relations, Summation equations, and Heat balance). 
The objective is to minimize the total heat duty, subject to constraints on 
product purity and recovery. The optimization variables include the 
number of stages, feed stage location, and reflux ratio. The thermody
namic properties are modeled using the Chao-Seader model to predict 
phase equilibrium.

The DE is implemented with a population size of 50, a scaling factor 
F= 0.8, and a crossover rate CR= 0.9. The BUMDA is implemented with 
a population size of 60, a selection parameter of 1/3, and a variance re- 
initialization threshold of 0.001. The optimization runs for 500 gener
ations, and the results are compared in terms of heat duty, convergence 
behavior, and computational efficiency.

Sensitivity analysis indicates that the performance of both algo
rithms is influenced by the choice of algorithm parameters. For DE, the 
scaling factor F and crossover rate CR significantly impact convergence 
speed and solution quality. For BUMDA, the Boltzmann distribution 
parameter and variance re-initialization threshold are critical for 
maintaining diversity and avoiding premature convergence. This paper 
compares two evolutionary algorithms: Differential Evolution (DE) and 
the Boltzmann Univariate Marginal Distribution Algorithm (BUMDA) 
with a self-adaptive constraints handling technique, applied to the 
optimization of distillation schemes using a rigorous model (MESH 
equations). The BUMDA, based on the Boltzmann distribution, is not 
widely used in chemical engineering but is capable of escaping local 
optima and finding feasible zones due to the incorporated variance re- 
initialization mechanism.

2.2. Constraints handling technique

The case studies in this work involve both equality and inequality 
constraints, necessitating a robust constraint-handling technique. Fig. 2
illustrates the pseudo code for the constraint-handling technique 
implemented within the BUMDA, which is similarly applied to the DE. 
The technique begins by assessing the feasibility of an individual, 
rejecting infeasible ones through a "death penalty." The fitness function 
is penalized based on the degree of constraint violation, which is pro
portional to the violation magnitude and the deviation from the target 
purity or recovery for each component. Additionally, a dynamic 
threshold ε is introduced, converting an equality constraint into an 
inequality constraint. This threshold ε is halved once the entire 
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Fig. 2. Pseudocode of the BUMDA for the optimization of distillation systems.
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population satisfies all constraints. Static penalties are also incorpo
rated, where the penalty coefficient increases with the level of violation. 
Another penalty factor increases when the total number of stages, as 
defined by the user, is exceeded. This maximum stage number is 
determined according to heuristic design rules dependent on the mixture 
types. This procedure continues until the number of function evaluations 
reaches the maximum allowed. This constraint-handling technique is 
detailed by Cortez-Gonzalez et al. (2023). In this paper, the purities of 
each component are within the range defined by the dynamic threshold 
of the restriction handling technique. In each case study, the dynamic 
threshold reached was 0.001, so the purity fluctuates in that proportion 
with respect to the desired purity value for each component.

2.3. Optimization process

The optimization process starts with the master program (either the 
DE or BUMDA) generating the initial population. The design variables 
are sent to Excel, where their feasibility is verified, and these variables 
are then used to call Aspen One for evaluating the fitness function. The 
evaluated fitness value is returned to Excel to compute the constraints, 
and the resultant value is sent to Matlab, where population sorting oc
curs. This information is used to generate the next population. This 
iterative process continues until the stopping criteria, defined by the 
maximum number of function evaluations, is reached.

3. Cases studies

In chemical engineering, the modeling of distillation processes relies 
heavily on MESH equations—an intricate system of nonlinear and 
nonconvex equations that describe Material balance, Equilibrium re
lations, Summation equations, and Heat balance for each stage within a 
distillation column. These equations are interdependent, making the 
MESH model highly complex and computationally demanding. Solving 
MESH equations requires robust algorithms capable of handling the 
inherent mathematical challenges associated with nonlinearity, non
convexity, and high dimensionality, as even small-scale systems can 
demand significant computational resources.

This study examines three distinct case scenarios: a binary distilla
tion column, a distillation train, and a quaternary distillation column. In 
each case, heat duty is selected as the objective function for evaluating 
and comparing the performance of the optimization algorithms under 
consideration. The heat duty, which represents the energy required by 
the distillation system to achieve the desired separation of components, 
is a crucial metric for process efficiency. Optimizing this value can lead 
to significant energy savings and operational cost reductions, which are 
essential in energy-intensive distillation processes.

By focusing on heat duty, the study aims to gauge the ability of each 
optimization algorithm to navigate the MESH model’s complex solution 
space effectively. Specifically, the comparison of heat duty values across 
different optimization methods provides insights into each algorithm’s 
capacity to locate feasible regions, avoid entrapment in local optima, 
and minimize computational effort while achieving an optimal solution. 
Because heat duty is independent of other design variables, it serves as 
an unambiguous measure of each optimizer’s effectiveness, allowing for 
a clear assessment of its performance without interference from sec
ondary variables.

Overall, this study’s findings underscore the need for advanced al
gorithms in distillation process optimization, where achieving optimal 
separation outcomes through complex MESH modeling can have sub
stantial impacts on both energy consumption and environmental sus
tainability in chemical processing. 

Case 1. Binary distillation column

A binary distillation column separates a mixture into two products. 
The simplest sequence is shown in Fig. 3, where a feed stream enters the 
column, separating two adjacent components into top (light component) 

and bottom (heavy component) products. The column design considers 
the total number of stages, the reflux ratio, and the feed stage, aiming to 
minimize energy consumption. Although the reboiler duty energy is not 
an optimization variable, it is crucial for the optimal design for a given 
mixture and composition.

This study uses a binary mixture of butane and hexane with an 
equimolar composition. The relative volatilities of the adjacent com
ponents indicate that is easy separation is performed between n-butane, 
A, and n-hexane, B. The Chao-Seader thermodynamic model is used, 
with a feed flowrate of 100 kmol/h at 1 atm. The problem is defined as 
follows:

Find vector 

Z = (NT,NF,RR) (3) 

To minimize fitness function 

Q = f(Z) (4) 

Subject to constraint function 

h1,j(Z) = xpur
targetj = 1,…,Mconstraints

h2,j(Z) = xrec
targetj = 1,…,Mconstraints

(5) 

and subject to boundary constraints 

z(L)i ≤ zi ≤ zU
i i = 1,…,D

2 < NF ≤ NT
(6) 

Where: NT,NF,RR are total stages, feed stage and reflux ratio of the 
column respectively. In this problem the goal is to minimize the amount 
of energy in the reboiler, Q. The individual is represented by Z and D 
represents the number of variables or dimensions of the optimization 
problem. The upper and lower bounds correspond to zi

(U) and zi
(L), 

respectively. The Eq. 4 is subject to the set of constraints represented in 
Eqs. 5–6; they are handled as inequality constraints establishing a small 
deviation (tolerance) around the target defined, xpur

target = 0.99 and 
xrec

target = 0.99, that corresponding to the desired purity and recovery for 
each component. In a binary column, there exist four constraints; two of 
them impose by the purities and the others for the purities of each 
component. The equality constraints are treat as inequality constraints 
defining a threshold (ε) that relaxes the fitness function penalization in 
early generations, however the penalization becomes during optimiza
tion process (Eq. 7).

For instance, the equality constraint: 

Fig. 3. Distillation column to split a binary mixture.
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hj(z) − kj = 0
istreatedas :⃒
⃒
(
hj(z) − kj

)⃒
⃒ ≤ ε

(7) 

Where k is the xpur
i or xrec

i for each component.
Thus, the constraint is evaluate to true when 

(
hj(z) − kj

)
is inside the 

interval[ − ε, + ε].
Last constraint (Eq. 7) is derive from the sequence design, because of 

the feed stage must be inside the range of the total stages of the column.
Results
Table 1 shows the best five individuals of each algorithm according 

to the best fitness function value, all meeting the constraints. For the DE, 
the best individual has a reflux ratio of 1.036, with 9 total stages and the 
feed introduced at stage 3, requiring 2.768 GW/year to split the mixture. 
Although individuals 3 and 4 have fewer total stages, their reboiler duty 
and reflux ratio are approximately doubled. The worst individual re
quires three times the total reboiler duty of the best due to a reflux ratio 
of 5.258, despite only a one-stage difference in total stages. All five in
dividuals meet all constraints.

For BUMDA, the best individual demands 2.623 GW/year of heat 
duty with a design of 7 total stages, feeding at stage 4, and a reflux ratio 
of 0.896. The feed stage remains constant at 4 in all five individuals, 
with four individuals having 7 stages and one having 8. The best fitness 
function value of 2.623 GW/year compared to the worst 2.919 GW/year 
shows a slight variation due to a change in the reflux ratio from 0.896 to 
1.171. All constraints are satisfied in all five individuals. 

Case 2. Distillation train

A distillation train separates a multicomponent mixture into two 
adjacent components in each column, with the number of columns 
corresponding to n− 1 for an n component mixture. For a four- 
component mixture (C1, C2, C3, C4), the first column separates the 
most volatile component (C1) at the top, with the rest at the bottom. The 
second column separates C2, and the final column separates C3 and C4. 
Fig. 4 illustrates the distillation train for a multicomponent mixture.

The mixture of four linear aliphatic hydrocarbons (C4-C6, C8) has a 
feed flow rate of 100 kmol/h, composed of 0.05, 0.45, 0.45, and 0.05 for 
n-butane, n-pentane, n-hexane, and n-octane, with purities 0.987, 0.98, 
0.98 y 0.986, respectively. The mixture in our analysis is a mixture of 
hydrocarbons; the intermediate components, B and C, are of normal 
chain, and the light, A, and heavy, D. The feed composition contains a 
high concentration of the two intermediate components (90 %). The 
relative volatilities of the adjacent components indicate that the harder 
separation is performed between n-pentane, B, and n-hexane, C; the 
easiest cut is the light and heavy components: n-butane, A, and n-octane, 
D. The Chao-Seader model is used for the equilibrium liquid-vapor. 
Mathematically, the optimization problem is described by the 8–11 
equations.

Find vector 

Z = (NTB1,NFB1,NTB2,NFB2,NTB3,NFB3,RRB1,RRB2,RRB3) (8) 

To minimize fitness function 

Q = f(Z) (9) 

Subject to constraint function 

g1,j(Z) = xpur
target j = 1,…,Mconstraints

g2,j(Z) = xrec
target j = 1,…,Mconstraints

(10) 

and subject to boundary constraints 

z(L)i ≤ zi ≤ zU
i i = 1,…,D

2 < NFBl ≤ NTBll = 1,…,Bcolumns
(11) 

In the optimization of distillation train the objective is find a vector Z 
variables (Eq. 8) that minimize the total heat duty, Q (Eq. 9). This vector 
is: the total stage number (NT), feed stage number (NF) and reflux ratio 
(RR), of each column (B). In the vector Z, NT and NF are discrete vari
ables and RR is continuous variable. In this model optimization, the 
distillation train is constraint (Eq. 10) by to purity, xtarget

,pur and the re
covery, xtarget,

rec of each component Ncomponents. In addition, NF should 
always be less than NT and each dimension, zi are between lower, zi

L and 
upper zi

U boundaries (Eq. 11).
Results
Table 2 presents the five best solutions obtained by the DE and 

BUMDA algorithms. For the DE, design variables vary significantly, with 
a 3 GW/year difference between the best and worst fitness function 
values. The reflux ratio values are similar across the three columns, with 
column 1 having a minimum value of approximately 14. In all designs, 
the total stages number exceeds 35 in at least one column. These in
dividuals meet all constraints within the threshold value.

For the BUMDA, the worst fitness function value differs from the best 
by 2.350 GW/year, with the best at 22.849 GW/year. All columns in the 
five designs have fewer than 15 total stages. The feed stages are between 
7 and 14, while the reflux ratio varies between 2.875 and 5.102. 

Case 3. Optimization of a quaternary mixture in a single column

In this case, the goal is to separate a multicomponent mixture using 
the intensified sequences propose by Errico et al. (2009), who supposes 
that these configurations can reduce the energy consumption in relation 
with the conventional sequences (i.e. distillation train).

The intensified sequences (Fig. 5) have a feed stream and four out 
streams. The light component (C1) is obtained in the top column, the 
intermediate components (C2 and C3) are withdrawer in the side 
streams; while that the heavy component (C4) is removed in the bottom 
column. The intensified sequences are subject to several design condi
tions, such that the out stages of side streams must not be equal each 
other, neither with the feed stream stage.

These intensified sequences have three configurations possible 
(Fig. 5). The several configurations sequences, in this paper are named 
topologies. In the first configuration the feed stage is above the side 
streams; in the second topology the feed stage is between the side 
streams; and in the last configuration the feed stream is below the side 
streams. The main aim in these configurations is reduce the heat duty to 
achieve separation, however it depends of the design variables, such as 
total stages number (NT), feed stages (NF), location of the side streams 
stages (NS1 and NS2) and reflux ratio (RR).

The case study examined in this sequence intensified is the separa
tion aliphatic chain hydrocarbon mixture (n-butane, n-pentane, n-hex
ane and n, octane) whose feed is made 0.30, 0.40, 0.25 and 0.05, 
respectability. As design targets, it is required that the four components 
achieve a recovery specification of 98 %; also, is required a purity of 
98.7 % for the light component, 98.0 % for the intermediate compo
nents and 98.6 % for the heavy component.

The mixture in our analysis is another mixture of hydrocarbons; the 
light, A, intermediates, B and C, and the heavy component D, are of 
normal chain. The feed composition contains a concentration of the light 

Table 1 
Best five individuals obtained by DE and BUMDA Algorithms, Case 1.

Algorithm Exp Design variables Fitness function

NT NF RR Q (GW/year)

DE Best 9 3 1.036 2.769
E1 8 6 1.234 2.992
E2 6 4 2.686 4.588
E3 6 3 2.868 4.787
E4 10 3 5.258 7.288

BUMDA Best 7 4 0.896 2.624
E1 7 4 0.994 2.73
E2 8 4 1.041 2.769
E3 7 4 1.064 2.805
E4 7 4 1.171 2.92
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component of 30 % (the second more abundant) and the heavy 
component of 5 % (the less abundant). The relative volatilities indicate 
that the separations are in general easy. In this case, the easiest cut is 
among n-hexane (C)/n-octane (D); the less easy includes n-pentane (B), 
and n-hexane (C).

In this case, the objective of the optimization is to minimize the total 
reboiler duty (Q) in the column, as shown in the adaptation function. 
The optimization problem is described by 12–15 equations.

Find vector 

Z = (NT,NF,NS1,NS2,RR, topology) (12) 

To minimize fitness function 

Q = f(Z) (13) 

Subject to constraint function 

g1,j(Z) = xpur
target j = 1,…,Mconstraints

g2,j(Z) = xrec
target j = 1,…,Mconstraints

(14) 

and subject to boundary constraints 

z(L)i ≤ zi ≤ z(U)

i i = 1,2…D
2 < NF ≤ NT
NS1,NS2 < NT
NF ∕= NS1 ∕= NS2

(15) 

Where: NTis the total number of stages; NFis the feeding stage; NS1 and 
NS2 they are stages of extraction of the lateral currents and RR is the 
reflux ratio. The problem is having five design variables, of which four 
are discrete. In this problem, one more design variable was add, which is 
the optimal configuration (topology) to perform the separation, 
considering that for this case study there are three options. The topology 

Fig. 4. Flowsheet of distillation train to split a four components mixture.

Table 2 
The five Best individuals of the DE, distillation train, Case 2.

Algorithm Exp B1 B2 B3 Fitness function

NT NF RR NT NF RR NT NF RR Q (GW/year)

DE Best 18 11 20 34 21 3.946 30 19 1.482 9.426
E1 41 12 14.418 47 27 4.634 35 28 2.135 10.48
E2 32 11 16.954 38 5 5.106 38 12 1.939 10.988
E3 44 14 16.881 27 17 3.229 15 7 3.988 11.511
E4 42 25 17.449 36 12 5.053 21 5 2.798 12.031

BUMDA Best 26 10 14.728 28 17 2 17 9 1.697 7.153
E1 23 10 14.949 24 15 2.812 19 12 1.629 7.962
E2 27 16 14.411 30 7 2.411 16 10 2.311 8.348
E3 24 10 14.765 17 10 3.133 20 13 1.8 8.519
E4 23 12 15 16 11 4.004 15 7 1.8 9.500
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of the designs varies according to the position of the feed and the lateral 
currents. The authors define topology as the configuration that each 
distillation system can have.

Despite knowing a priori that this design is highly inflexible, it allows 
exploring the performance and versatility of the algorithm, since it re
quires handling two different thermodynamic constraints given by the 
feed stages and the lateral output currents. In this thermodynamic 
constraint, it is established that none of the currents must have at least 1 
stage difference between them. While all these currents must be less 
than the total number of stages. Under this criterion, the algorithm 
evaluated the performance of three different configurations and 
throughout the optimization decided which was the best design.

Results
In Table 3, a more detailed comparative study is made about the best 

and worst value obtained by BUMDA respect to the heat duty, against 
the best design of DE. We can see that the best design obtained with the 
BUMDA has 3 GW/year below best designs of the DE. Likewise, although 
the heat duty does not represent a great difference, the BUMDA was able 

Fig. 5. Flowsheet of intensified sequences to split a four components mixture.

Table 3 
Comparative performance of best individuals obtained by DE and BUMDA al
gorithms, Case 3.

Algorithm Exp Design variables Fitness function

NT NF NS1 NS2 RR Q (GW/year)

DE Best 68 36 23 52 70.232 39.861
E1 73 49 18 59 70.632 40.083
E2 73 38 23 57 70.502 40.083
E3 68 36 23 56 71.119 40.353
E4 69 40 24 55 71.667 40.649

BUMDA Best 58 37 21 50 64.105 36.498
E1 71 37 24 49 64.123 36.502
E2 71 37 25 54 64.747 36.843
E3 58 40 21 49 65.679 37.365
E4 62 32 21 42 65.870 37.462
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to find a design able to reduce into more than 30 % the size of the col
umn. For its part, with respect to the topology’s optimization of the 
intensified sequence, it is possible to see that both optimizers agreed that 
the best configuration is one where the feed is located between the side 
streams. The location of the feed stage is in the range of 37–40 stages, 
while the side outputs of the best designs on both algorithms have 
similar or even identical values (Side 1). The reflux ratio value found 
varies in four units; however, this difference directly affects the amount 
of energy required. Now, taking into account the purities obtained, it 
must be emphasized that designs of the BUMDA are closer to the target 
values established by the problem, reason enough to say that the design 
is suitable to carry out the separation.

The comparative analysis of DE and BUMDA algorithms for opti
mizing distillation processes reveals that both algorithms can effectively 
find optimal solutions that meet all constraints. The BUMDA consis
tently produces solutions with lower energy consumption and fewer 
total stages compared to the DE. This study demonstrates the feasibility 
and efficiency of employing advanced evolutionary algorithms for 
optimizing complex distillation processes in the chemical industry. The 
BUMDA, with its ability to maintain diversity in the population and 
exploit the search space effectively, shows promise for broader appli
cations in process optimization.

4. Discussion of results

In this paper is presents a comparison of the DE vs BUMDA. The two 
algorithms are tested to optimize three problems: the binary column, 
distillation train and a single column to separate four components. In 
two cases the stop criteria is the total number function evaluations. 
Besides, performing a comparison of statistical parameters with the 
bootstrap function.

The simulations were realize with a PC computer with i7 processor 
core, 16 GB of RAM and clock frequency at 2.8 GHz. The DE parameters 
using in all cases were CR= 0.8 and F= 0.75, and 100 individuals pear 
generations and 20,000 total function evaluations. For BUMDA use 60 
individuals per generation with a total 3000 function evaluation and the 
parameter of truncate population is 1/3. In this paper is presents a 
comparison of the DE vs BUMDA. The two algorithms are tested to 
optimize three problems: the binary column, distillation train and a 
single column to separate four components. In two cases the stop criteria 
is the total number function evaluations. Besides, performing a com
parison of statistical parameters with the bootstrap function.

The simulations were realize with a PC computer with i7 processor 
core, 16 GB of RAM and clock frequency at 2.8 GHz. The DE parameters 
using in all cases were CR= 0.8 and F= 0.75, and 100 individuals pear 
generations and 20,000 total function evaluations. For BUMDA use 60 
individuals per generation with a total 3000 function evaluation and the 
parameter of truncate population is 1/3. These parameters were ob
tained through a tuning process.

4.1. Analysis performance of DE and BUMDA stochastic algorithms

Despite, that in last years, the use of the stochastic algorithms to 
optimization of distillation systems in chemical engineering has been 
increased, all researchers have been focused in applying algorithms 
inspired in nature phenomena such as Genetic Algorithm, Simulated 
Annealing and Differential evolution, obtaining good results but require 
effort high computation and a long computing time finding one feasible 
zone. Recently has been design a new generation of algorithms that are 
based on the estimation of the distribution, called Evolutionary distri
bution algorithms (EDAs).

For this reason, the aim main of this paper is the performance 
comparison between DE and BUMDA. The first algorithm is inspired in 
natural phenomena and the second algorithm is based in estimation of 
Boltzmann distribution. We compare the computing time, quality solu
tion and avoid getting trapped by local minima. The statistical analysis 

of the results is realized and determinate which is the better algorithm to 
optimize distillation systems.

Fig. 6 shows the behavior of the DE and BUMDA algorithms 
throughout the optimization process for the three case studies analyzed. 
On the left side are the graphs of the BUMDA and on the right side are 
those of the DE. For the DE, a similar behavior is observed in the three 
case studies. Graphs b, d, and f describe a good exploration process and 
yield good quality solutions that satisfy the constraints imposed by each 
problem.

On the other hand, the BUMDA describes a very different behavior 
from that presented by the DE. For all three cases, the BUMDA shows 
different convergence zones to feasible solutions. In most cases, the 
feasible zone found improves the objective function value as the number 
of function evaluations increases. With this behavior it is evident that 
the BUMDA is capable of departing from local optima. BUMDA during 
the first generations performs a wide exploration process. When it finds 
a feasible area, it intensifies the search until the threshold value of the 
variance is maintained for 5 generations. When this happens and the 
total number of function evaluations has not been reached, it activates 
the variance re-initialization mechanism that allows to widen again the 
search space and eventually, to find a better feasible zone, as shown in 
graphs a, c and e. This behavior could be observed during the optimi
zation process in the 30 experiments performed, for each algorithm in 
each case of study.

In this paper, an experiment represents an optimization run that is 
performed for a given algorithm and a given case study. We decided to 
perform 30 experiments for each case study, to perform the comparison 
of the DE and BUMDA algorithms, through statistical tests.

Fig. 7 shows a representative sample of the best solutions found by 
both algorithms for each case study. The algorithms are compared in 
terms of the total number of stages and the total energy required in the 
distillation system in the Fig. 7a, 7c and 7e. The blue points represent the 
solutions of the DE and the pink points belong to the BUMDA. A blue line 
and a pink line have been added to represent the average DE and 
BUMDA, respectively. From this graph, it can be seen that the best so
lutions found by BUMDA outperform those of the DE due to the fact that 
most of the designs offer lower values in heat duty and total number of 
stages. Therefore, the mean value of BUMDA is lower than the mean 
value of DE solutions. This behavior is observed in the three case studies 
analyzed.

On the other hand, these graphs show the importance of handling the 
total number of stages as a constraint within the optimization problem in 
distillation columns. When the number of stages in a column decreases, 
the heat duty increases substantially. Therefore it is necessary to have 
tools that offer designs that decrease both the heat duty and the total 
number of stages, as shown in Fig. 7a, 7c and 7e.

As a complement, Fig. 7b, 7d and 7f shows the box plots for each case 
study. In this figure, the red line shows the median of each algorithm. 
This analysis was performed on the 30 solutions corresponding to each 
experiment. In all three cases, the median of the BUMDA is better than 
that of the DE. In the case of the quaternary column, Fig. 7f, the DE 
shows outliers due to the complexity of the distillation system. While the 
BUMDA shows a bias to the left as its values are more clustered below 
the median. For the binary column (Fig. 7b), the BUMDA shows a uni
form distribution of the data so that the mean, mode and median are 
very similar, while DE shows a bias to the left. Finally, for the distillation 
column, DE shows a uniform distribution and BUMDA shows a skew to 
the right (Fig. 7d).

To make the comparative analysis between the results obtained by 
the BUMDA and DE algorithms more reliable, the nonparametric sta
tistical test Bootstrap, which is one of the most widely accepted 
resampling statistical tests, has been implemented. This test has been 
used to compare the performance of evolutionary algorithms on 
benchmark functions (Segovia-Domínguez et al., 2020).

The advantage of Bootstrap is that, being a non-parametric statistical 
test, it requires assuming theoretical a priori formulations (hypotheses) 
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and can be used for any estimator (mean, median, standard deviation). 
For the analysis proposed in this study, 3 cases are proposed: 

Case 1. The null hypothesis is accepted, defining that the second al
gorithm performs better.

H0 : μ1 − μ2 ≥ 0H1 : μ1 − μ2 < 0 

Case 2. The null hypothesis is accepted, there is no substantial evi
dence of difference in the performance of the algorithms.

H0 : μ1 − μ2 = 0H1 : μ1 − μ2 ∕= 0 

Case 3. The null hypothesis is accepted; the first algorithm has a better 
performance.

Fig. 6. Performance of the BUMDA and DE throughout the optimization process.
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H0 : μ2 − μ1 ≥ 0H1 : μ2 − μ1 < 0.

This hypothesis was tested using the three cases studied. The 30 
solutions found were use as input to Bootstrap tool. The application of 
the Bootstrap test to determine if there are significant differences in the 
quality of the set of solutions yielded by each of the algorithms and in 
turn, if these differences exist, to determine which of the two algorithms 
has a better performance. In the hypothesis test, μ1 and μ2 represent the 

mean of DE and BUMDA, respectively.
These data were entered into the Bootstrap statistical test to perform 

the statistical comparison of the results with the mean being the test 
statistic. The comparison was performed only between ED and BUMDA. 
For the ED-BUMDA algorithm pair, the statistical tool shows that: there 
is a significant difference in the solutions found by each algorithm and 
statistically the best optimal solutions are found by the BUMDA, in all 
cases. The p-values obtained are 0.9984, 0.9993 and 0.9988 for the first 

Fig. 7. Representative solutions of the experiments performed for the DE and BUMDA algorithms, in each case study.
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hypothesis proposed; for binary column, distillation train and quater
nary column, respectively. Based on the data analysis for the specific 
problem shown, it is possible to state with 95 % confidence that the 
BUMDA performs better, so that it finds better solutions than Differential 
Evolution.

Table 4 shows several parameters that allow us to compare both the 
performance of the algorithms and the results obtained in the bootstrap 
statistical test. The first comparative parameter is the number of func
tion evaluations (NEF). In all cases, DE evaluated 20,000 functions and 
BUMDA 3000, corresponding to 200 and 50 generations, respectively. 
This significantly reduces the computational complexity of BUMDA. The 
solution of the distillation systems varies between 8 and 14 h for the 
most complex case. For DE, the solution time is between 47 and 112 h.

Respect at the quality solution, we consider two issues: 

• Fitness function: Is the total energy consumption in the distillation 
system. The value obtained by BUMDA is better than DE, in all cases. 
In the major of the cases study, the worst solution obtained by 
BUMDA requires the same energy consumption that the best solution 
of DE.

• Total stages number: It is the sum of the total number of stages of all 
the columns in the distillation system. In general, BUMDA give 
design that requires less total stages, so that the size of column is 
small, in all cases.

On the other hand, to perform the bootstrap test, the level alpha in 
the 0.05 and in all cases of study when comparing DE with BUMDA, the 
result shows that BUMDA is better than DE.

Fig. 8 shows radar plots for each case study. The axes correspond to 
the design variables and the fitness function (total heat duty). These 
values have been normalized in each dimension with respect to the 
maximum value found. The blue line corresponds to the best design 
obtained by DE and the orange line represents the best solution found by 
BUMDA. In all cases, it is evident that the best solution obtained by 
BUMDA is better than the best solution obtained by DE. It is also seen 
that as the distillation system becomes more complex, the BUMDA 
shows better performance, significantly improving the design obtained 
by DE, as observed in Fig. 8b).

Finally, based on the results obtained with both algorithms in the 
three case studies, the stochastic algorithm based in Boltzmann distri
bution, BUMDA implemented by us, is better than DE, due that offers 
best solutions in less computing time and requires low effort of 
computation. Addition the performance in optimization process of 
BUMDA, presents a high convergence in best feasible zone and is iden
tified clearly an intensification zone that means improve quality of so
lutions. According results, the BUMDA is capable of explore in all search 
space and it finds several feasible zones and starts the intensification 

process in the best feasible zone. This study verifies that the approach 
presented in this paper, BUMDA with self-adaptive constraints handling 
technique, is a powerful and robust tool capable of optimizing distilla
tion systems in chemical engineering and potentially useful in other 
engineering areas.

The numerical results reveal that both DE and BUMDA achieve sig
nificant heat duty savings. BUMDA converges faster and reaches a lower 
heat duty than DE in most cases. However, BUMDA demonstrates better 
robustness in escaping local optima and finding feasible solutions for 
more complex problems with stringent constraints.

The convergence plots show that DE improves the solution quality in 
the first generations, but the progress slows down as it approaches the 
optimum. In contrast, BUMDA exhibits a more gradual improvement 
due to being able to avoid local optimum, throughout the optimization 
process. The final heat duty values for DE and BUMDA shows significant 
differences, BUMDA outperforming DE in all cases studied. In addition, 
the BUMDA shows a major performance in complex problems.

5. Conclusions

This study demonstrates the effectiveness of the Boltzmann Univar
iate Marginal Distribution Algorithm (BUMDA), based on the Boltzmann 
distribution, as a powerful optimization tool for distillation processes 
with constraints in chemical engineering. When coupled with a self- 
adaptive constraint handling technique, BUMDA efficiently identifies 
the optimal solution by aligning the maximum of the Boltzmann dis
tribution with the best fitness function value. The algorithm signifi
cantly reduces computational effort, time, and the number of function 
evaluations required for optimizing complex separation schemes.

The variance re-initialization feature of BUMDA allows for effective 
exploration of the search space, intensification in promising regions, and 
the ability to escape local optima. A comparative analysis with Differ
ential Evolution (DE) highlights substantial differences in both the time 
to obtain a solution and the quality of the results. BUMDA consistently 
outperforms DE in terms of solution quality across all the distillation 
systems analyzed, achieving heat duty reductions of 5–20 %, with the 
highest reductions observed in systems with greater numbers of design 
variables.

Moreover, the statistical results from the bootstrap test confirm that 
BUMDA provides the best objective function values in all cases studied. 
These findings underscore the potential of BUMDA as an effective and 
efficient optimization tool for distillation system design, particularly 
when dealing with problems involving a large number of design 
variables.

Table 4 
Performance comparison table between BUMDA and DE algorithms.

Parameter Case 1 Case 2 Case 3

DE BUMDA DE BUMDA DE BUMDA

Performance 
algorithms

NEF 20,000 3000 20,000 3000 20,000 3000
Generations 200 50 200 50 200 50
Operators F= 0.8, CR= 0.75 Φ= 1/3 

Re-init of variance
F= 0.8, CR= 0.75 Φ= 1/3 

Re-init of variance
F= 0.8, CR= 0.75 Φ= 1/3 

Re-init of variance
Time solution (h) 47 8 94 12 112 14
NT 9 7 82 71 68 58
Q (GW/year) 2.769 2.624 9.426 7.153 39.861 36.498

Bootstrapp testing P value 0.9984 0.9993 0.9988
alpha 0.05 0.05 0.05
H0 : μ1 − μ2 ≥ 0
H1 : μ1 − μ2 < 0

Accepted 
(DE equal or worse than BUMDA)

Accepted 
(DE equal or worse than BUMDA)

Accepted 
(DE equal or worse than BUMDA)

H0 : μ1 − μ2 = 0
H1 : μ1 − μ2 ∕= 0

Rejected 
(DE and BUMDA are different)

Rejected 
(DE and BUMDA are different)

Rejected 
(DE and BUMDA are different)

H0 : μ2 − μ1 ≥ 0
H1 : μ2 − μ1 < 0

Rejected 
(BUMDA better than DE)

Rejected 
(BUMDA better than DE)

Rejected 
(BUMDA better than DE)
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